TTOOL-AMS

Integration of SystemC-AMS Simulation Platforms into TTool

Author: Rodrigo Cortés Porto (University of Kaiserslautern)
Co-Authors: Dr. D. Genius (Sorbonne University, LIP6)
Irina Lee (Sorbonne University, Master SESI)
Prof. L. Apvrille (Télécom Paris)

Contents

1

Getting started

1.1 Virtual Machine
1.2 Configuration under Linux
1.3 Installing and executing TTool

TTool’s usage scenario

Directory tree of source code and generated files

$HOME/TTool/
MPSoC/
SysCAMSGeneratedCode/
| _bin/
ksystemc—env.sh
.soclib/
Lg,global.conf
| .bashrc

Figure 1.1: Virtual machine directory tree.

1 Getting started

1.1 Virtual Machine

In the Virtual Machine version, tested under VirtualBox, TTool, as well as SoClib and
MutekH are preinstalled. You will require to fetch SystemC-AMS from the Accelera
website, which requires registration:

www.accellera.org

Figure 1.1 shows the relevant part of the Virtual Machine directory tree. The Vir-
tual Machine uses bash and automatically configures all paths on invoking the script
systemc-env.sh.

1.2 Configuration under Linux

The following subsection describes an installation under Linux !. Before installing TTool,
a global.config file should be created under $HOME/.soclib/. This file can found in
Listing 1.32.

In order to use TTool and SystemC-AMS for co-simulation, you need to install SystemC-
AMS on your machine. SoCLib and MutekH are provided as part of the TTool free
software distribution.

SystemC-AMS is free but requires registration and is available at the following url:
www.accellera.org

Then, you require the systemc-env.sh file (by Torsten Maehne) This file can found in
Listing 1.4 to set up the paths for compilation 3.

Figure 1.2: Code for the soclib.conf Configuration file.

!Tested under Scientific Linux 6
2The file is provided in the Virtual Machine version.
3The file is provided in the Virtual Machine version, in the bin directory.

Figure 1.3: Code for the global.conf Configuration file of SoCLib for TTool.

Figure 1.4: Code for systemc-env.sh

Finally, you need to work under bash and set up your .bashrc as follows. As an example,
the .bashrc file in the Virtual machine looks as follows, you might have to adapt it to
your system configuration (Listing 1.5).

.bashrc
Source global definitions
if [-f /etc/bashrc]; then . /etc/bashrc; fi

User specific aliases and functions

export PATH=$PATH:$HOME/bin:$HOME/TTool/MPSoC/soclib/utils/bin
export PATH=$PATH:/opt/mutekh/bin

export PATH=$PATH:/opt/jdk1.8.0_73/bin

export PATH=$PATH:$HOME/cxtools/gcc_mips/obj/bin/

export LD_LIBRARY_PATH=$HOME/TTool/MPSoC/mutekh/1ib

Figure 1.5: Example for .bashrc

1.3 Installing and executing T Tool

In order to install and execute TTool, run the following commands under the $H0ME/TTool/
directory:

> make ttool
> make install
> ./ttool.exe

After opening TTool, go to File>New Model. Right click on the design area and select
“New SystemC-AMS Block Diagram”. A new SystemC-AMS panel will open. Right click
on the panel and select New SystemC-AMS Diagram. A new SystemC-AMS Component
Diagram panel will open. In the same way, several SystemC-AMS Component Diagrams
can be created inside the SystemC-AMS panel.

Remark: It is also possible to compile and run TTool under gradle (recommended if
unitary tests should be run). This is not part of the Virtual Machine implementation;
the proceding is explained on the TTool web site.

2 TTool’s usage scenario

For this usage scenario, the TDF model shown in Figure 2.1 will be modeled and sim-
ulated in TTool. Module A will write a value of 2 to module B. Module B will read
that value, multiply it by the last value received from the GPIO2VCI component, and
transmit the result to the GPIO2VCI component which will be connected to the SoCLib
interconnect component of an SoC platform.

TDF Cluster SoC
SoCLib

GPIO2VCI Model

Figure 2.1: TDF Cluster model

Inside the SystemC-AMS Component Diagram panel TDF clusters can be created. To
create a TDF cluster click on the “Cluster” button, number 1 of Figure 2.2, and click
anywhere inside the SystemC-AMS Component Diagram panel to place the TDF Cluster
block. Double-click to change the name of the TDF cluster. The size of the TDF cluster
can be adjusted.

To add TDF module blocks, click on the “TDF Block” button, number 2 of Figure 2.2,
and click anywhere inside the TDF Cluster block to place the TDF Module block. To add
a DE module block follow the same procedure, just start by clicking on the “DE Block”
button, number 3 of Figure 2.2. To add a GPIO2VCI block, click on the “GPIO2VCI
block” button, number 4 of Figure 2.2. GPIO2VCI blocks should be placed outside of
the TDF Cluster block.

D@

BSOS D

TOF_Cluster

& B blockGPIO2VCl

Tm =6.0 ms - =5 -

Figure 2.2: TDF Cluster creation in the SystemC-AMS Component Diagram panel.

The properties of the TDF module blocks can be set by double-clicking the block. A
new window will open, as shown in Figures 2.3 to 2.5. In the Attributes panel the name
and module timestep (Tm) including time units can be set, as Figure 2.3 shows. In
the Parameters panel, seen in Figure 2.4, the parameters of a TDF module such as its
internal variables or template parameters can be also set up. In the Process Code panel,
the processing() function of the module can be set, as Figure 2.5 shows. Finally, if
constructor code needs to be added, it can be done in the Constructor Code panel. The
attributes of the DE module blocks can be modified in the same way. The GPIO2VCI
block has no attributes to be modified.

Setting TDF Block Attributes (on berlioz) X

(Attributes | Parameters | Process Code | Contructor Code |
Setting TDF block attributes

Name : & |

Period Tm : lso | [ms =

| m Save and close H ’ Cancel |

Figure 2.3: Attributes panel

When the required modules have been created they need to be connected through their
ports. The TDF ports and converter ports can be added to the TDF module blocks.
Click on the “TDF port” button, number 5 of Figure 2.2, to add a TDF port. Click on
the “Converter port” button, number 6 of Figure 2.2, to add a TDF converter port. DE
ports can be added to the DE blocks and to the GPIO2VCI block by clicking on the
DE port button, number 7 of Figure 2.2. The attributes of the ports can be modified
by double-clicking a port, as shown in Figure 2.6. The name, timestep (Tp) along with
the time units, rate, delay, type and origin of the port can be modified. Note that if a
TDF module or a DE module will be connected to the GPIO2VCI component, the type
sc_uint<32> should be selected as shown in Figure 2.6. For DE ports, the port can be

Setting TDF Block Attributes (on berlioz) x

Attributes N'Parameters | Process Code rCnntru(tnr Code |

Setting TDF block parameters Managing struct :
Struct : —
identifier wvalue const type
N N -
| Add { Modify parameter ‘ < [v]
M ing typedef :
Template : EIREEIE)
identifier value type ml
[| = [[int |»
| oK ‘ < DN
Typedef : ‘ up |
identifier type
Fee P || |
Add { Modify typedef ‘ ‘ Remove parameter |
@ Save and close H . Cancel ‘

Figure 2.4: Parameters panel

Setting TDF Block Attributes (on berlioz) X

[Attributes | Parameters [Process Code | Contructor Code |
Behavior function of TDF block

void processing() { =
out.write(2);

}

Ll

| E Save and close H . Cancel |

Figure 2.5: Process Code panel

added to the sensitivity list of the module by enabling the Sensitive field and selecting
if the port will be sensitive to a positive or negative edge of the incoming signal or null
for any incoming signal change. To connect the blocks, click the “Connector” button,
number 8 of Figure 2.2, and then click an output port to connect it with an input port.

Once a TDF cluster model has been created. The next step is to validate the correctness
of the model. This is done by clicking on the “Generate SystemC-AMS code” button,
as shown in number 9 from Figure 2.2. This will open a new window, where validation
of the model and code generation can be made. Click on the “Start” button to start
the validation of the model, as shown in Figure 2.7. The Validation panel will display a
message stating if there is an error with the model and make suggestions on how to fix
it. If the model is valid, then a success message will be displayed and the Generate Code
panel will open, as shown in Figure 2.8. Click on the “Start” button again to generate
the SystemC-AMS code for the model.

In parallel, the Software Design and the Deployment Diagrams can be created. Right
click on the tabs section of the design area and select “New Design” to create a new
Software Design panel. A Block diagram can be created there, as shown in Figure 2.9.

Setting Converter Ports (on berlioz) x

Setting converter input port attributes

Name : [out J
Period Tp : | | |s |v|
Rate : [|
Delay : [|
Type : [sc_uint<32> [~
origin : |0utput |v|

| [saveandciose || @ cancel |

Figure 2.6: Setting port attributes.

Executable Code generation, compilation and execution (0.. — 0O X

[(alidation | Generate code |
Validation

-
Select options and then, click on *start’ to launch validation f cod|—|

[1]

] 1 | [+]

‘ D sta. H Stop H @ co ‘

Figure 2.7: Validation panel

Click on the “Block” button, number 1 of Figure 2.9, to add a new block. Note that
a new panel is created automatically, with the name of the block. Go to the BlockO
panel. Here, state machine diagrams that allow to design the software can be created, as
shown in Figure 2.10. For this model, one state will be added by clicking on the “State”
button, number 1 of Figure 2.10, and placing it in the panel. A stop block can be added
by clicking the “Stop” button, number 2 of Figure 2.10. Finally the states should be
connected by clicking the “Connect” button, number 3 of Figure 2.10.

By double-clicking the state block, C code can be entered manually in the Prototyping
tab. Here is where the functions to communicate to the GPIO2VCI component can be
added as shown in Figure 2.11. For the software of this model, a value of 5 will be
written to the GPIO2VCI component. This value will be transmitted to the TDF cluster
components. Then the output from the TDF cluster will be read and printed to the TTY
component of the model. The code is shown in Listing 2.12.

Note that the code is using a variable tmp. To create the variable in the Block Diagram
panel, double click BlockO to open the attributes window for the block, as shown in

Executable Code generation, compilation and execution (0. —= O X

Validation [Generate code |

Code generation

Base directory of code generation:

./SysCAMSGenerationCode/ |
Base directory of topcell generation:

[./SysCAMSGenerationCode/ |
Base directory of Makefile:

[./SysCAMSGenerationCode/ |

-
Select options and then, click on 'start’ to launch validation f cod|—|

Performing Validation for "TDF_Cluster®.
Validation for "TDF_Cluster” completed.

Ready to process next command

[4]

q i | [+]

| b sta_ H stop H @ co ‘

Figure 2.8: Generate Code panel

@SystemciAMS I/EPDeployment I/Tﬂ?Design \
B9 Block Diagram | $s Blockd
ool |vwy @ =
W

[»

block (Y
Blockd

- tmp = 0: int;

[4]

4] i D

Figure 2.9: Software design Block Diagram panel.

Figure 2.13. In the Attributes panel, new variables can be added by giving an identifier
name, an initial value and a type.

Once that the software design is complete, the MPSoC model needs to be created in
the Deployment Diagram. Here, the user can insert SoCLib components and the TDF
clusters. To insert a CPU click the “CPU” button, number 1 of Figure 2.14. Double click
the CPU block and setup the necessary attributes. To add a RAM memory click on the
“RAM” button, number 2 of Figure 2.14. Double click the RAM block and set up its
attributes. To add a TTY console click on the “TTY” button, number 3 of Figure 2.14.
Finally an interconnect component needs to be added, by clicking the “VGMN” button,
number 4 of Figure 2.14. To map the software blocks from the Block Diagram into a
specific CPU, click the “Map and AVATAR block” button, number 5 of Figure 2.14, and
place it under the CPU. Double click the block inside the CPU and select the name of
the block that is mapped to that CPU.

In order to include the TDF clusters into the MPSoC model, they need to be added as
SystemC-AMS Cluster blocks in the Deployment Diagram. To add a new SystemC-AMS
Cluster block, click on the “Cluster” button, number 6 of Figure 2.14, and place the block

| & systemC AMS | 3% Deployment | B9 Design |
B9 Block Diagram [§z Blocko

1 W---Q?o SNERENEIE =
@ YUY

[m_J»

@

4 i DN

Figure 2.10: Software design State Machine Diagram panel.

Setting state parameters (on berlioz) x

General [Prototyping |
Entry code

tmp = read_gpio2vcil "TDF_Cluster');
printf("Value read from TDF Cluster: %chn®, tmp);
write_gpio2vcils, "TOF_Cluster');

tmp = read_gpioZvcil TOF_Cluster');
printf("value read from TOF Cluster: %cin”, tmp);

4] [

‘ @ cancel | [save and clase

Figure 2.11: State block Prototyping panel .

in the Deployment Diagram panel. The name of the SystemC-AMS Cluster block should
be the same name provided in the SystemC-AMS Component diagram. All the blocks
should be connected to a SoCLib interconnect component using a connector, number 7 of
Figure Figure 2.14. Once the necessary SystemC-AMS Cluster blocks have been added,
the topcell from the Deployment Diagram model can be generated. In the Deployment
Diagram Panel, click on the “Syntax analysis” button, number 8 of Figure 2.14. This will
open a new window to verify the syntax of the model, as shown in Figure 2.15. Click on
the “Check syntax” button. If there are any syntax errors, a message will be displayed,
otherwise we can proceed to the generation of the topcell.

tmp = read_gpio2vci("TDF_Cluster");
printf("Value read from TDF Cluster: %d\n", tmp);
write_gpio2vci(5, "TDF_Cluster");

tmp = read_gpio2vci("TDF_Cluster");

printf ("Value read from TDF Cluster: %d\n", tmp);

Figure 2.12: State block code.

Setting attributes of BlockO (on berlioz)

(‘Attributes | Methods | signals | Prototyping |

Adding Attributes

Managing Attributes

“tmp =0 ints
access identifier initial value type
ER -6 T [w
Down
| Add / Modify Attribute] Remova Attribute
@ cancel | [E] save and close

Figure 2.13: Block diagram’s Block attributes.

ode Generation View Tool Help

P B0

2| (o] 100% [fa] [|
eig/cortes/models {| {8 SystemC_aMs [(85Deployment | fF Design
o [SystemC_AUS(SystemC-ANS Corl | cgp e e i e
o g Deployment ideployment diagrar * oyl al — —
o B9 Design (Design] _ . .D E & H .
b8t e o[- Q[[=/@
o R Graphs), © =
o m |nyvariants
o 8 search result
* <<Cru>> w <A B <<SvstemC.AMS Clusterss
ErFu Memory0 TOF_Cluster =

* <<TTY>>
TTYO

|

- <<VGMN>>
Vgmna

[

Figure 2.14: Adding SystemC-AMS Clusters to the Deployment Diagram.

Click on the “Generate Deploy SoCLib” button in the Deployment Diagram panel, num-
ber 9 of Figure 2.14. A new window will be opened where the topcell code can be
generated, compiled and executed. In Figure 2.16, the Generate Code panel is shown,
where several option can be chosen, including the tracing capabilities and debugging
information. Click “Start” to generate the topcell top.cc code and the software code.
Then in the Compile panel, click “Start” to compile the code. Finally in the Execute

Executable Code generation, compilation and execution (o.. -

x

Generate code | Compile | Execute | Results |

Code generation
Base directory of code generation:

[.mpsecy

Base directory of topcell generation:

[.mPsocy

[v] Remove ¢/ .h files

[v] Remove x files

[¢] Put debug information in generated code
[] Put tracing capabilities in generated code
[v] Optimize code

[¥] Include user code
1 time unit =

|sec

Code generator used:

[avaTAR sOCLIB

]

(b |

1
Stop || .CIo,,, |

Figure 2.16: Code generation window.

panel, click “Start” to begin the simulation of the virtual prototype of the model.

10

Choosing blocks to validate (on berlioz) x

Blocks ignored Blocks taken into accou...

Block: MotorControl
Block: MainControl

Optimize specification

O Cancel E Check syntax

Figure 2.15: Check syntax window.

vci—multi-tty0 (on berlioz) =

Figure 2.17 shows the TTY console from the model. In the last lines, the values being
read from the TDF cluster are printed. The first value is 0, since nothing have been
written to the TDF cluster. The last value is 10, since a value of 5 was written to the
TDF cluster, and it is being multiplied by the value 2 generated from the TDF module

Figure 2.17: Simulation output from the TTY component of the

11

model.

3 Directory tree of source code and generated files

In this section, the directory tree of all source files modified for this project and all the
generated files is shown. Listing 3.1 shows the location of the automatically generated
files from TTool. The SystemC-AMS generated files for the TDF clusters are stored
under the generated_CPP/ directory, and the generated files for the TDF modules are
stored under the generated_H/ directory. The generated source code files for the software
of the virtual prototype are stored under the generated_src/ directory. The generated
topcell is stored in the generated_topcell/ directory.

$HOME/TTool/

| SysCAMSGenerationCode/
| generated_CPP/

[*_taf.n

| _generated_H/

[*_taf.n

| MPSoC/

| generated_src/

main.c
BlockO.c
| _generated_topcell/

Ltop.cc

Figure 3.1: Generated code files directories.

The GPIO2VCI component was created under the connectivity_component/ directory,
as shown in Listing 3.2

$HOME/TTool/MPSoC/soclib/soclib/module/connectivity_component/gpio2vci/caba/
| metadata/

gpio2vci.sd

source/include/

Lgpionci.h

source/src/

Lgpionci .Cpp

Figure 3.2: GPIO2VCI component directories.

12

Listing 3.3 shows the java files that were modified or created as part of the integration
of the SystemC-AMS modules and SoCLib modules into TTool.

13

The libsyscams library created to provide interface functions for communication with
the GPIO2VCI component is shown under Listing 3.4.

Listing 3.5 shows other files that were modified as part of the integration tasks.

$HOME/TTool/MPSoC/
Makefile.forsoclib
generated_topcell/
L conf ig_noproc

Figure 3.5: Other modified files for the integration tasks.

14

$HOME/TTool/src/main/ java/
L ui/
| window/
JDialogSysCAMSExecutableCodeGeneration. java
JDialogSysCAMSBlockDE. java
JDialogSysCAMSBlockTDF. java
JDialogSysCAMSPortConverter. java
JDialogSysCAMSPortDE. java
JDialogSysCAMSPortTDF. java
| _AvatarDeploymentPanelTranslator.java
| syscamstranslator/
toSysCAMSCluster/
ClusterCode. java
Header. java
PrimitiveCode. java
TopCellGeneratorCluster. java
SysCAMSTBlockTDF. java
SysCAMSSpecification. java
SysCAMSTPortDE. java
SysCAMSTPortTDF. java
SysCAMSTPortConverter. java
SysCAMSValidateException. java
| ddtranslatorSoclib/
| _toSoclib/
Gpio2VciAddress. java
TaskFileSoclib. java
TasksAndMainGenerator. java
| toTopCell/
Declaration. java
Header. java
MappingTable. java
NetList. java
Platforminfo. java
Signal. java
TopCellGenerator. java
| AvatarAmsCluster.java
| AvatarddSpecification. java

Figure 3.3: Java files created or modified for the integration of SystemC-AMS and SoCLib
modules.

$HOME/TTool/MPSoC/mutekh/libsyscams/
gpio2vci_address.c
gpio2vci_address.h
gpio2vci_iface.c
gpio2vci_iface.h
libsyscams.config
Makefile

Figure 3.4: 1libsyscams library source files.

15

