
TTool-AMS
Integration of SystemC-AMS Simulation Platforms into TTool

Author: Rodrigo Cortés Porto (University of Kaiserslautern)

Co-Authors: Dr. D. Genius (Sorbonne University, LIP6)

Irina Lee (Sorbonne University, Master SESI)

Prof. L. Apvrille (Télécom Paris)

Contents

1 Getting started 1
1.1 Virtual Machine . 1
1.2 Configuration under Linux . 1
1.3 Installing and executing TTool . 6

2 TTool’s usage scenario 6

3 Directory tree of source code and generated files 13

1 Getting started

1.1 Virtual Machine

In the Virtual Machine version, tested under VirtualBox, TTool, as well as SoClib and
MutekH are preinstalled. You will require to fetch SystemC-AMS from the Accelera
website, which requires registration:

www.accellera.org

Figure 1.1 shows the relevant part of the Virtual Machine directory tree. The Vir-
tual Machine uses bash and automatically configures all paths on invoking the script
systemc-env.sh.

$HOME/TTool/
MPSoC/
SysCAMSGeneratedCode/

bin/
systemc-env.sh
.soclib/

global.conf
.bashrc

Listing 1.1: Virtual machine directory tree.

1.2 Configuration under Linux

The following subsection describes an installation under Linux 1. Before installing TTool,
a global.config file should be created under $HOME/.soclib/. This file can found in
Listing 1.32.

In order to use TTool and SystemC-AMS for co-simulation, you need to install SystemC-
AMS on your machine. SoCLib and MutekH are provided as part of the TTool free
software distribution.

SystemC-AMS is free but requires registration and is available at the following url:

www.accellera.org

Then, you require the systemc-env.sh file (by Torsten Maehne) This file can found in
Listing 1.4 to set up the paths for compilation 3.

1Tested under Scientific Linux 6
2 The file is provided in the Virtual Machine version.
3 The file is provided in the Virtual Machine version, in the bin directory.

www.accellera.org
www.accellera.org

1 # -*- python -*-
2 import os
3 syscams = os.getenv('SYSTEMC_AMS')
4 assert syscams, ValueError("Must set $SYSTEMC_AMS")
5 sysc = os.getenv('SYSTEMC')
6 assert sysc, ValueError("Must set $SYSTEMC")
7

8 config.systemc_ams = Config(
9 base = config.systemc,

10 cflags = ['-Iinclude',
11 '-I'+sysc+'/include',
12 '-I'+syscams+'/include'
13],
14 libs = ['-Wl,-rpath='+sysc+'/lib-linux64', '-L'+sysc+'/lib-linux64',
15 '-Wl,-rpath='+syscams+'/lib-linux64', '-L'+syscams+'/lib-linux64',
16 '-lsystemc-ams', '-lsystemc', '-lm'
17],
18)
19 config.ams = Config(
20 base = config.default,
21 systemc = config.systemc_ams,
22 repos = "./obj/soclib-cc",
23)
24 config.default = config.ams

Listing 1.2: Code for the soclib.conf Configuration file.

1 # -*- python -*-
2

3 # SOCLIB environment definition
4 def mkname():
5 try:
6 import os
7 import pwd
8 return pwd.getpwuid(os.getuid())[0]
9 except OSError:

10 try:
11 import os
12 return os.environ["LOGNAME"]
13 except KeyError:
14 return 'unknown'
15

16 config.toolchain_64 = Toolchain(
17 parent = config.toolchain,
18 max_processes = 3,
19 cflags = config.toolchain.cflags+['-m64'],
20)
21

22 config.systemc_22_64 = Library(
23 parent = config.systemc,
24 dir = "/opt/systemcams/systemc-2.3.1/",
25 cflags = config.systemc.cflags,
26 os = "linux64",
27)
28

29 config.systemc_ams = Library(
30 parent = config.systemc,
31 dir = "/opt/systemcams/systemc-ams-2.1",
32 cflags = ['-Iinclude',
33 '-I/opt/systemcams/systemc-ams-2.1/include'
34],
35 libs = ['-Wl,-rpath=/opt/systemcams/systemc-2.3.1/lib-linux64',
36 '-L/opt/systemcams/systemc-2.3.1/lib-linux64',
37 '-Wl,-rpath=/opt/systemcams/systemc-ams-2.1/lib-linux64',
38 '-L/opt/systemcams/systemc-ams-2.1/lib-linux64',
39 '-lsystemc-ams', '-lsystemc', '-lm'
40],
41)
42

43 # Definition of a new build environments, which can be referenced with 'soclib-cc -t'
44

45 # SystemC 64bits environment
46 config.systemc_64 = BuildEnv(
47 parent = config.build_env,
48 repos = "/home/%s/tmp/soclib_repos_64"%mkname(),
49 toolchain = config.toolchain_64,
50 libraries = [config.systemc_22_64, config.systemc_ams],
51)
52

53 config.default = config.systemc_64

Listing 1.3: Code for the global.conf Configuration file of SoCLib for TTool.

1 #!/bin/bash
2 ##
3 # systemc-env.sh: Set up the environment for SystemC
4 ##
5 # Author: Torsten MAEHNE <Torsten.Maehne@lip6.fr>
6 # Created: 2014-01-30
7 ##
8 #
9 # This shell script prepares the shell environment for building or

10 # using the SystemC libraries. You can either source it from the command
11 # line or in your .bashrc:
12 #
13 # . ./systemc-env.sh [--build-version=2.2|2.3.0|2.3.1]
14 # [--build-type=Debug|Release] \
15 # [-h|--help] \
16 # [-v|--version] \
17 #
18 ##
19

20 ##
21 # Print help message
22 ##
23 function systemc_environment_help_message() {
24 cat <<EOF
25 This script should be sourced to prepare your environment for SystemC:
26 . $0 [--build-version=2.2|2.3.0|2.3.1] [--build-type=Debug|Release]
27 EOF
28 }
29

30 ##
31 # Print version message
32 ##
33 function systemc_environment_version_message() {
34 cat <<EOF
35 systemc-env.sh: Set up the environment for SystemC
36 Author: Torsten MAEHNE <Torsten.Maehne@lip6.fr>
37 Version: unreleased
38 EOF
39 }

40 ##
41 # Function to manipulate the path variable
42 ##
43 path_append () { path_remove $1; export PATH="$PATH:$1"; }
44 path_prepend () { path_remove $1; export PATH="$1:$PATH"; }
45 path_remove () { export PATH=`echo -n $PATH | awk -v RS=: -v ORS=: '$0 != "'$1'"' | sed 's/:$//'`; }
46

47 # Default SystemC version (either 2.2, 2.3.0, or 2.3.1)
48 SYSTEMC_VERSION=2.3.1
49 # Default SystemC build type (either Release or Debug)
50 SYSTEMC_BUILD_TYPE=Release
51 # Process the command line arguments
52 for i in $*
53 do
54 case $i in
55 --build-version=*)
56 SYSTEMC_VERSION=${i#*=}
57 ;;
58 --build-type=*)
59 SYSTEMC_BUILD_TYPE=${i#*=}
60 ;;
61 -h | --help)
62 systemc_environment_help_message
63 exit 0
64 ;;
65 -v | --version)
66 systemc_environment_version_message
67 exit 0
68 ;;
69 *)
70 # unknown option
71 echo "Error: Unknown option \"$i\"" 1>&2
72 exit 1
73 ;;
74 esac
75 done
76

77 case $SYSTEMC_BUILD_TYPE in
78 Debug)
79 SYSTEMC_BUILD_SUFFIX=dbg
80 ;;
81 Release)
82 SYSTEMC_BUILD_SUFFIX=rel
83 ;;
84 *)
85 echo "Error: Unknown build type \"$BUILD_TYPE\". Use either \"Debug\” or \"Release\"." 1>&2
86 esac
87

88 case $SYSTEMC_VERSION in
89 2.3.1)
90 export BOOST_ROOT=/usr
91 export SYSTEMC_ARCH=linux64
92 export TARGET_ARCH=
93 export SYSTEMC_ROOT=/opt/systemcams/systemc-2.3.1
94 export SYSTEMC_HOME=$SYSTEMC_ROOT
95 export SYSTEMC_AMS_HOME=/opt/systemcams/systemc-ams-2.1
96 export SYSTEMC_INCLUDE_DIRS="-I$SYSTEMC_ROOT/include -I$SYSTEMC_AMS_HOME/include"
97 export SCV_HOME=$SYSTEMC_ROOT
98 export TLM_HOME=$SYSTEMC_ROOT
99 export SYSTEMC_LIBRARY_DIRS="-Wl,-rpath=$SYSTEMC_HOME/lib-$SYSTEMC_ARCH

100 -L$SYSTEMC_HOME/lib-$SYSTEMC_ARCH -Wl,-rpath=$SYSTEMC_AMS_HOME/lib-$SYSTEMC_ARCH
101 -L$SYSTEMC_AMS_HOME/lib-$SYSTEMC_ARCH"
102 export PATH=$PATH:/opt/soclib/utils/bin:/opt/mipsel-unknown-elf/bin
103 ;;
104 *)
105 echo "Error: Unknown SystemC version \"$SYSTEMC_VERSION\". 1>&2
106 ;;
107 esac
108

109 export SYSTEMC=$SYSTEMC_HOME
110 export TLM2=$TLM_HOME
111 export SYSTEMC_AMS=$SYSTEMC_AMS_HOME

Listing 1.4: Code for systemc-env.sh

Finally, you need to work under bash and set up your .bashrc as follows. As an example,
the .bashrc file in the Virtual machine looks as follows, you might have to adapt it to
your system configuration (Listing 1.5).

1 # .bashrc
2 # Source global definitions
3 if [-f /etc/bashrc]; then . /etc/bashrc; fi
4

5 # User specific aliases and functions
6 export PATH=$PATH:$HOME/bin:$HOME/TTool/MPSoC/soclib/utils/bin
7 export PATH=$PATH:/opt/mutekh/bin
8 export PATH=$PATH:/opt/jdk1.8.0_73/bin
9 export PATH=$PATH:$HOME/cxtools/gcc_mips/obj/bin/

10 export LD_LIBRARY_PATH=$HOME/TTool/MPSoC/mutekh/lib

Listing 1.5: Example for .bashrc

1.3 Installing and executing TTool

In order to install and execute TTool, run the following commands under the $HOME/TTool/
directory:

> make ttool
> make install
> ./ttool.exe

After opening TTool, go to File>New Model. Right click on the design area and select
“New SystemC-AMS Block Diagram”. A new SystemC-AMS panel will open. Right click
on the panel and select New SystemC-AMS Diagram. A new SystemC-AMS Component
Diagram panel will open. In the same way, several SystemC-AMS Component Diagrams
can be created inside the SystemC-AMS panel.

Remark: It is also possible to compile and run TTool under gradle (recommended if
unitary tests should be run). This is not part of the Virtual Machine implementation;
the proceding is explained on the TTool web site.

2 TTool’s usage scenario

For this usage scenario, the TDF model shown in Figure 2.1 will be modeled and sim-
ulated in TTool. Module A will write a value of 2 to module B. Module B will read
that value, multiply it by the last value received from the GPIO2VCI component, and
transmit the result to the GPIO2VCI component which will be connected to the SoCLib
interconnect component of an SoC platform.

A B

SoC
SoCLib
Model

R= 1
D= 0

Tm= 6 ms Tm= 4 ms

Tp= 4 ms

R= 3

Tp= 2 ms
D= 0

R= 2
D= 0

Tp= 2 ms

TDF Cluster

GPIO2VCI

Figure 2.1: TDF Cluster model

Inside the SystemC-AMS Component Diagram panel TDF clusters can be created. To
create a TDF cluster click on the “Cluster” button, number 1 of Figure 2.2, and click
anywhere inside the SystemC-AMS Component Diagram panel to place the TDF Cluster
block. Double-click to change the name of the TDF cluster. The size of the TDF cluster
can be adjusted.

To add TDF module blocks, click on the “TDF Block” button, number 2 of Figure 2.2,
and click anywhere inside the TDF Cluster block to place the TDF Module block. To add
a DE module block follow the same procedure, just start by clicking on the “DE Block”
button, number 3 of Figure 2.2. To add a GPIO2VCI block, click on the “GPIO2VCI
block” button, number 4 of Figure 2.2. GPIO2VCI blocks should be placed outside of
the TDF Cluster block.

Figure 2.2: TDF Cluster creation in the SystemC-AMS Component Diagram panel.

The properties of the TDF module blocks can be set by double-clicking the block. A new
window will open, as shown in Figure 2.3. In the Attributes panel the name and module
timestep (Tm) including time units can be set, as Figure 2.3a shows. In the Parameters
panel, seen in Figure 2.3b, the parameters of a TDF module such as its internal variables
or template parameters can be also set up. In the Process Code panel, the processing()
function of the module can be set, as Figure 2.3c shows. Finally, if constructor code needs
to be added, it can be done in the Constructor Code panel. The attributes of the DE
module blocks can be modified in the same way. The GPIO2VCI block has no attributes
to be modified.

(a) Attributes panel (b) Parameters panel

(c) Process Code panel

Figure 2.3: TDF module block attributes window.

Figure 2.4: Setting port attributes.

When the required modules have been created they need to be connected through their
ports. The TDF ports and converter ports can be added to the TDF module blocks.
Click on the “TDF port” button, number 5 of Figure 2.2, to add a TDF port. Click on
the “Converter port” button, number 6 of Figure 2.2, to add a TDF converter port. DE
ports can be added to the DE blocks and to the GPIO2VCI block by clicking on the
DE port button, number 7 of Figure 2.2. The attributes of the ports can be modified
by double-clicking a port, as shown in Figure 2.4. The name, timestep (Tp) along with
the time units, rate, delay, type and origin of the port can be modified. Note that if a
TDF module or a DE module will be connected to the GPIO2VCI component, the type
sc_uint<32> should be selected as shown in Figure 2.4. For DE ports, the port can be
added to the sensitivity list of the module by enabling the Sensitive field and selecting
if the port will be sensitive to a positive or negative edge of the incoming signal or null
for any incoming signal change. To connect the blocks, click the “Connector” button,
number 8 of Figure 2.2, and then click an output port to connect it with an input port.

Once a TDF cluster model has been created. The next step is to validate the correctness
of the model. This is done by clicking on the “Generate SystemC-AMS code” button, as
shown in number 9 from Figure 2.2. This will open a new window, where validation of
the model and code generation can be made. Click on the “Start” button to start the
validation of the model, as shown in Figure 2.5a. The Validation panel will display a
message stating if there is an error with the model and make suggestions on how to fix
it. If the model is valid, then a success message will be displayed and the Generate Code
panel will open, as shown in Figure 2.5b. Click on the “Start” button again to generate
the SystemC-AMS code for the model.

In parallel, the Software Design and the Deployment Diagrams can be created. Right
click on the tabs section of the design area and select “New Design” to create a new
Software Design panel. A Block diagram can be created there, as shown in Figure 2.6.
Click on the “Block” button, number 1 of Figure 2.6, to add a new block. Note that a
new panel is created automatically, with the name of the block. Go to the Block0 panel.
Here, state machine diagrams that allow to design the software can be created, as shown
in Figure 2.7. For this model, one state will be added by clicking on the “State” button,
number 1 of Figure 2.7, and placing it in the panel. A stop block can be added by clicking
the “Stop” button, number 2 of Figure 2.7. Finally the states should be connected by
clicking the “Connect” button, number 3 of Figure 2.7.

(a) Validation panel (b) Generate Code panel

Figure 2.5: Validation and code generation window.

Figure 2.6: Software design Block Diagram panel.

By double-clicking the state block, C code can be entered manually in the Prototyping
tab. Here is where the functions to communicate to the GPIO2VCI component can
be added as shown in Figure 2.8. For the software of this model, a value of 5 will be
written to the GPIO2VCI component. This value will be transmitted to the TDF cluster
components. Then the output from the TDF cluster will be read and printed to the TTY
component of the model. The code is shown in Listing 2.1.

tmp = read_gpio2vci("TDF_Cluster");
printf("Value read from TDF Cluster: %d\n", tmp);
write_gpio2vci(5, "TDF_Cluster");
tmp = read_gpio2vci("TDF_Cluster");
printf("Value read from TDF Cluster: %d\n", tmp);

Listing 2.1: State block code.

Note that the code is using a variable tmp. To create the variable in the Block Diagram
panel, double click Block0 to open the attributes window for the block, as shown in
Figure 2.9. In the Attributes panel, new variables can be added by giving an identifier
name, an initial value and a type.

Figure 2.7: Software design State Machine Diagram panel.

Figure 2.8: State block Prototyping panel .

Once that the software design is complete, the MPSoC model needs to be created in
the Deployment Diagram. Here, the user can insert SoCLib components and the TDF
clusters. To insert a CPU click the “CPU” button, number 1 of Figure 2.10. Double click
the CPU block and setup the necessary attributes. To add a RAM memory click on the
“RAM” button, number 2 of Figure 2.10. Double click the RAM block and set up its
attributes. To add a TTY console click on the “TTY” button, number 3 of Figure 2.10.
Finally an interconnect component needs to be added, by clicking the “VGMN” button,
number 4 of Figure 2.10. To map the software blocks from the Block Diagram into a
specific CPU, click the “Map and AVATAR block” button, number 5 of Figure 2.10, and
place it under the CPU. Double click the block inside the CPU and select the name of
the block that is mapped to that CPU.

In order to include the TDF clusters into the MPSoC model, they need to be added as
SystemC-AMS Cluster blocks in the Deployment Diagram. To add a new SystemC-AMS
Cluster block, click on the “Cluster” button, number 6 of Figure 2.10, and place the block
in the Deployment Diagram panel. The name of the SystemC-AMS Cluster block should
be the same name provided in the SystemC-AMS Component diagram. All the blocks
should be connected to a SoCLib interconnect component using a connector, number 7 of
Figure Figure 2.10. Once the necessary SystemC-AMS Cluster blocks have been added,
the topcell from the Deployment Diagram model can be generated. In the Deployment
Diagram Panel, click on the “Syntax analysis” button, number 8 of Figure 2.10. This will
open a new window to verify the syntax of the model, as shown in Figure 2.11. Click on
the “Check syntax” button. If there are any syntax errors, a message will be displayed,
otherwise we can proceed to the generation of the topcell.

Figure 2.9: Block diagram’s Block attributes.

Figure 2.10: Adding SystemC-AMS Clusters to the Deployment Diagram.

Figure 2.12: Code generation window.

Click on the “Generate Deploy SoCLib” button in the Deployment Diagram panel, num-
ber 9 of Figure 2.10. A new window will be opened where the topcell code can be
generated, compiled and executed. In Figure 2.12, the Generate Code panel is shown,
where several option can be chosen, including the tracing capabilities and debugging
information. Click “Start” to generate the topcell top.cc code and the software code.
Then in the Compile panel, click “Start” to compile the code. Finally in the Execute
panel, click “Start” to begin the simulation of the virtual prototype of the model.

Figure 2.11: Check syntax window.

Figure 2.13 shows the TTY console from the model. In the last lines, the values being
read from the TDF cluster are printed. The first value is 0, since nothing have been
written to the TDF cluster. The last value is 10, since a value of 5 was written to the
TDF cluster, and it is being multiplied by the value 2 generated from the TDF module
A.

Figure 2.13: Simulation output from the TTY component of the model.

3 Directory tree of source code and generated files

In this section, the directory tree of all source files modified for this project and all the
generated files is shown. Listing 3.1 shows the location of the automatically generated
files from TTool. The SystemC-AMS generated files for the TDF clusters are stored
under the generated_CPP/ directory, and the generated files for the TDF modules are
stored under the generated_H/ directory. The generated source code files for the software
of the virtual prototype are stored under the generated_src/ directory. The generated
topcell is stored in the generated_topcell/ directory.

$HOME/TTool/
SysCAMSGenerationCode/

generated_CPP/
*_tdf.h

generated_H/
*_tdf.h

MPSoC/
generated_src/

main.c
Block0.c

generated_topcell/
top.cc

Listing 3.1: Generated code files directories.

The GPIO2VCI component was created under the connectivity_component/ directory,
as shown in Listing 3.2

$HOME/TTool/MPSoC/soclib/soclib/module/connectivity_component/gpio2vci/caba/
metadata/

gpio2vci.sd
source/include/

gpio2vci.h
source/src/

gpio2vci.cpp

Listing 3.2: GPIO2VCI component directories.

Listing 3.3 shows the java files that were modified or created as part of the integration
of the SystemC-AMS modules and SoCLib modules into TTool.

$HOME/TTool/src/main/java/
ui/

window/
JDialogSysCAMSExecutableCodeGeneration.java
JDialogSysCAMSBlockDE.java
JDialogSysCAMSBlockTDF.java
JDialogSysCAMSPortConverter.java
JDialogSysCAMSPortDE.java
JDialogSysCAMSPortTDF.java

AvatarDeploymentPanelTranslator.java
syscamstranslator/

toSysCAMSCluster/
ClusterCode.java
Header.java
PrimitiveCode.java
TopCellGeneratorCluster.java

SysCAMSTBlockTDF.java
SysCAMSSpecification.java
SysCAMSTPortDE.java
SysCAMSTPortTDF.java
SysCAMSTPortConverter.java
SysCAMSValidateException.java

ddtranslatorSoclib/
toSoclib/

Gpio2VciAddress.java
TaskFileSoclib.java
TasksAndMainGenerator.java

toTopCell/
Declaration.java
Header.java
MappingTable.java
NetList.java
Platforminfo.java
Signal.java
TopCellGenerator.java

AvatarAmsCluster.java
AvatarddSpecification.java

Listing 3.3: Java files created or modified for the integration of SystemC-AMS and SoCLib
modules.

The libsyscams library created to provide interface functions for communication with
the GPIO2VCI component is shown under Listing 3.4.

$HOME/TTool/MPSoC/mutekh/libsyscams/
gpio2vci_address.c
gpio2vci_address.h
gpio2vci_iface.c
gpio2vci_iface.h
libsyscams.config
Makefile

Listing 3.4: libsyscams library source files.

Listing 3.5 shows other files that were modified as part of the integration tasks.

$HOME/TTool/MPSoC/
Makefile.forsoclib
generated_topcell/

config_noproc

Listing 3.5: Other modified files for the integration tasks.

	Getting started
	Virtual Machine
	Configuration under Linux
	Installing and executing TTool

	TTool's usage scenario
	Directory tree of source code and generated files

