/**Copyright or (C) or Copr. GET / ENST, Telecom-Paris, Ludovic Apvrille ludovic.apvrille AT enst.fr This software is a computer program whose purpose is to allow the edition of TURTLE analysis, design and deployment diagrams, to allow the generation of RT-LOTOS or Java code from this diagram, and at last to allow the analysis of formal validation traces obtained from external tools, e.g. RTL from LAAS-CNRS and CADP from INRIA Rhone-Alpes. This software is governed by the CeCILL license under French law and abiding by the rules of distribution of free software. You can use, modify and/ or redistribute the software under the terms of the CeCILL license as circulated by CEA, CNRS and INRIA at the following URL "http://www.cecill.info". As a counterpart to the access to the source code and rights to copy, modify and redistribute granted by the license, users are provided only with a limited warranty and the software's author, the holder of the economic rights, and the successive licensors have only limited liability. In this respect, the user's attention is drawn to the risks associated with loading, using, modifying and/or developing or reproducing the software by the user in light of its specific status of free software, that may mean that it is complicated to manipulate, and that also therefore means that it is reserved for developers and experienced professionals having in-depth computer knowledge. Users are therefore encouraged to load and test the software's suitability as regards their requirements in conditions enabling the security of their systems and/or data to be ensured and, more generally, to use and operate it in the same conditions as regards security. The fact that you are presently reading this means that you have had knowledge of the CeCILL license and that you accept its terms. /** * Class AUTGraph * Creation : 16/09/2004 ** @version 1.0 16/09/2004 * @author Ludovic APVRILLE * @see */ package ui.graph; import java.util.*; import java.io.*; import myutil.*; public class AUTGraph implements myutil.Graph { protected ArrayList<AUTTransition> transitions ; protected ArrayList<AUTState> states; protected int nbState; protected BufferedReader br; protected long nbTransition; protected int percentage; protected boolean[] hasExitTransition; protected boolean[] hasEntryTransition; protected boolean statesComputed; protected static String STYLE_SHEET = "node {" + " fill-color: blue;" + "} " + // "edge.defaultedge {" + // " shape: cubic-curve;" + // "}" + // "edge {shape: cubic-curve}" + "edge.external {" + " text-style: bold;" + "} " + "node.deadlock {" + " fill-color: green;" + "} " + "node.init {" + " fill-color: red;" + "} "; public AUTGraph() { transitions = new ArrayList<AUTTransition>(); //buildGraph(dataAUT); } public void stopBuildGraph() { br = null; } public int getPercentage() { return percentage; } public void buildGraph(String data) { if (data == null) { return; } StringReader sr = new StringReader(data); br = new BufferedReader(sr); String s, s1, s2; int index1; //int origin, destination; AUTTransition at; percentage = 0; int cpt, mod; /* read header */ //System.out.println("Building graph"); try { while((s = br.readLine()) != null) { index1 = s.indexOf("des"); //System.out.println("Searching for des"); if (index1 == 0) { //System.out.println("des found"); s1 = s.substring(s.indexOf(',') + 1, s.length()); s1 = s1.substring(0, s1.indexOf(',')); s1 = Conversion.removeFirstSpaces(s1); nbTransition = new Integer(s1).intValue(); s2 = s.substring(s.indexOf(",") + 1, s.indexOf(')')); s2 = s2.substring(s2.indexOf(",") + 1, s2.length()); s2 = Conversion.removeFirstSpaces(s2); nbState = new Integer(s2).intValue(); break; } } } catch (Exception e) { TraceManager.addDev("Exception when reading graph information: " + e.getMessage() + "\n"); return; } String[] array; hasExitTransition = new boolean[nbState]; hasEntryTransition = new boolean[nbState]; TraceManager.addDev("NbState=" + nbState + " NbTransition=" + nbTransition + "\n"); /*for(cpt=0; cpt<nbState; cpt ++) { hasExitTransition[cpt] = false; hasEntryTransition[cpt] = false; }*/ /* read transitions */ try { cpt = 0; mod = Math.max(1, (int)(nbTransition / 100)); while((s = br.readLine()) != null) { //System.out.println("realine:" + s); array = AUTGraph.decodeLine(s); at = new AUTTransition(array[0], array[1], array[2]); transitions.add(at); hasExitTransition[at.origin] = true; hasEntryTransition[at.destination] = true; cpt ++; if ((cpt % mod) == 0) { percentage = (int)((cpt *100) / nbTransition); //System.out.println("percentage=" + percentage + "cpt=" + cpt + "nbTransition=" + nbTransition); } } } catch (Exception e) { TraceManager.addDev("Cancelled: " + e.getMessage() + "\n"); return; } } public static String[] decodeLine(String s) { int index1, index2; String s1, s2, s3; index1 = s.indexOf("("); index2 = s.indexOf(","); s1 = s.substring(index1+1, index2); s = s.substring(index2 +1, s.length()); s = Conversion.removeFirstSpaces(s); // for of the action // , action, // "i(action<1,2,4>)", // "action<1,2,4>", // guillemets ? index1 = s.indexOf("\""); if (index1 > -1) { //System.out.println("Guillemets on " + s); s2 = s.substring(index1+1, s.length()); s2 = s2.substring(0, s2.indexOf("\"")); //System.out.println("Guillemets on " + s2); /*index2 = s2.indexOf("("); if (index2 > -1) { s2 = s2.substring(index2+1, s2.indexOf(")")); }*/ //System.out.println("Guillemets on " + s2); } else { //System.out.println("No Guillemets on " + s); index1 = s.indexOf(","); if ((index2 = s.indexOf("(")) >= 0) { s2 = s.substring(index2+1, index1-2); } else { if ((index2 = s.indexOf("\"t\"")) >= 0) { s2 = "t"; } else { s2 = s.substring(0, index1); } } } s = s.substring(s.indexOf(s2) + s2.length(), s.length()); //System.out.println("s=" + s); index1 = s.indexOf(","); //index2 = s.indexOf(")"); //s2 = s.substring(0, index1-1); s3 = s.substring(index1+1, s.length()-1); s3 = Conversion.removeFirstSpaces(s3); //System.out.println("s1=" + s1 + " s2=" + s2 + " s3=" + s3); String []array = new String[3]; array[0] = s1; array[1] = s2; array[2] = s3; return array; } public int getNbOfStates() { return nbState; } public void setNbOfStates(int _nb) { nbState = _nb; } public int getNbOfTransitions() { //return nbTransition; return transitions.size(); } public AUTTransition getAUTTransition(int index) { return transitions.get(index); } public ArrayList<AUTState> getStates() { return states; } public ArrayList<AUTTransition> getTransitions() { return transitions; } public void addTransition(AUTTransition _tr) { transitions.add(_tr); statesComputed = false; } public int getNbPotentialDeadlocks(){ int nb = 0; for(int i=0; i<nbState; i++) { if (hasEntryTransition(i)) { if (!hasExitTransition(i)) { nb ++; } } } return nb; } public String getActionTransition(int origin, int destination) { for(AUTTransition aut1 : transitions) { if ((aut1.origin == origin) && (aut1.destination == destination)){ return aut1.transition; } } return ""; } public boolean hasEntryTransition(int state) { return hasEntryTransition[state]; } public boolean hasExitTransition(int state) { return hasExitTransition[state]; } public boolean hasExitTransitionTo(int state, int destination) { if (!hasExitTransition(state)) { return false; } for(AUTTransition aut1 : transitions) { if ((aut1.origin == state) && (aut1.destination == destination)){ return true; } } return false; } /* State numbers are return under the form of int */ /* Should be rewritten: not of high performance at all */ public int[] getVectorPotentialDeadlocks() { int nbPotentialDeadlock = getNbPotentialDeadlocks(); //System.out.println("nb of deadlocks: " + nbPotentialDeadlock); int[] states = new int[nbPotentialDeadlock]; int index = 0; for(int i=0; i<nbState; i++) { if (hasEntryTransition(i)) { if (!hasExitTransition(i)) { states[index] = i; index ++; } } } return states; } public int [] shortestPathTo(int fromState, int targetState) { return GraphAlgorithms.ShortestPathFrom(this, fromState)[targetState].path; } public boolean hasTransitionWithAction(String action) { for(AUTTransition aut1 : transitions) { if (aut1.transition.compareTo(action) == 0){ return true; } } return false; } // For Graph interface public int getWeightOfTransition(int originState, int destinationState) { if (statesComputed) { if (states.get(originState).hasTransitionTo(destinationState)) { return 1; } } else { if (hasExitTransitionTo(originState, destinationState)) { return 1; } } return 0; } public String toAUTStringFormat() { StringBuffer graph = new StringBuffer(""); graph.append("des(0," + nbTransition + "," + nbState + ")\n"); for(AUTTransition aut1 : transitions) { graph.append("(" + aut1.origin + ",\"" + aut1.transition + "\"," + aut1.destination + ")\n"); } return graph.toString(); } public void computeStates() { if (!statesComputed) { states = new ArrayList<AUTState>(nbState); AUTState state; for(int i=0; i<nbState; i++) { state = new AUTState(i); states.add(state); } for(AUTTransition aut1 : transitions) { states.get(aut1.origin).addOutTransition(aut1); states.get(aut1.destination).addInTransition(aut1); } statesComputed = true; } } public AUTState getState(int _id) { return states.get(_id); } public boolean areStateComputed() { return statesComputed; } public HashSet<String> getAllActions() { HashSet<String> hs = new HashSet<String>(); for(AUTTransition tr: transitions) { hs.add(tr.transition); } return hs; } public void reinitMet() { for(AUTState state: states) { state.met = false; } } public AUTState findFirstOriginState() { AUTState state; for(int i=0; i<states.size(); i++) { state = states.get(i); //System.out.println("id=" + state.id + " transitions to me = " +state.inTransitions.size()); if (state.inTransitions.size() == 0) { return state; } } return null; } public void putTransitionsFromInitFirst() { ArrayList<AUTTransition> tmp = new ArrayList<AUTTransition>(); for(AUTTransition aut1 : transitions) { if (aut1.origin == 0) { tmp.add(aut1); } } for(AUTTransition aut2 : tmp) { transitions.remove(aut2); transitions.add(0, aut2); } } public void display() { AUTGraphDisplay display = new AUTGraphDisplay(this); display.display(); } public AUTGraph cloneMe() { AUTGraph newGraph = new AUTGraph(); newGraph.setNbOfStates(getNbOfStates()); for(AUTTransition tr: transitions) { AUTTransition newTr = new AUTTransition(tr.origin, tr.transition, tr.destination); newGraph.addTransition(newTr); } newGraph.computeStates(); return newGraph; } public void minimizeRemoveInternal() { String s = "tau"; // mark all transitions as non tau for(AUTTransition tr: transitions) { tr.isTau = false; } // Mark all tau transitions as tau for(AUTTransition tr: transitions) { if (tr.transition.startsWith("i(")) { tr.isTau = true; tr.transition = s; } } minimizeTau(); } public void minimize(String [] tauTransitions) { String s = "tau"; // mark all transitions as non tau for(AUTTransition tr: transitions) { tr.isTau = false; } // Mark all tau transitions as tau for(AUTTransition tr: transitions) { for (int i=0; i<tauTransitions.length; i++) { if (tr.transition.compareTo(tauTransitions[i]) == 0) { tr.isTau = true; tr.transition = s; } } } minimizeTau(); } public void minimizeTau() { boolean modif = true; while(modif) { modif = removeTauTr(); } statesComputed = false; } // Remove transition going from one state with only one tau transition as output private boolean removeTauTr() { AUTTransition tr; ArrayList<AUTState> toRemoveStates = new ArrayList<AUTState>(); // Remove in case state with one outgoing and outgoing is tau -> remove tr for(AUTState st: states) { if (st.outTransitions.size() == 1) { tr = st.outTransitions.get(0); if (tr.isTau) { transitions.remove(tr); st.outTransitions.clear(); AUTState st1 = states.get(tr.destination); if (st1 != st) { toRemoveStates.add(st1); TraceManager.addDev("Removing state " + st1.id); // Must put all incoming transition to the first state st1.inTransitions.remove(tr); for(AUTTransition trM: st1.inTransitions) { trM.destination = st.id; st.inTransitions.add(trM); TraceManager.addDev("New in transitions " + trM); } st1.inTransitions.clear(); // Out transitions st.outTransitions.clear(); for(AUTTransition trM: st1.outTransitions) { st.outTransitions.add(trM); trM.origin = st.id; TraceManager.addDev("New out transitions " + trM); } st1.outTransitions.clear(); } } } } // Remove all states and adapt the id in the graph for(AUTState str: toRemoveStates) { TraceManager.addDev("Removing really state " + str.id); // Last state of the array? if (str.id == (nbState - 1)) { TraceManager.addDev("Last state " + str.id); nbState --; states.remove(str.id); // str not at the end: we replace it with the last state // We need to accordingly update } else { AUTState moved = states.get(nbState-1); TraceManager.addDev("Moving state " + moved.id + " to index " + str.id); states.set(str.id, moved); states.remove(nbState-1); nbState --; AUTTransition tt = findTransitionWithId(nbState); if (tt != null) { TraceManager.addDev("1) Transition with id not normal" + tt); } moved.updateID(str.id); tt = findTransitionWithId(nbState); if (tt != null) { TraceManager.addDev("2) Transition with id not normal" + tt); } } return true; } return false; } private AUTTransition findTransitionWithId(int id) { for (AUTTransition tr: transitions) { if ((tr.origin == id) || (tr.destination == id)) { return tr; } } return null; } }