
UART to Master AXI3 Lite interface
documentation

October 23, 2015

ii

Contents

Introduction ix

1 User guide 1
1.1 Interface . 1
1.2 Internal registers . 1
1.3 Functional description . 2

2 Application notes 5
2.1 Introduction . 5
2.2 Content of the archive . 6
2.3 Installing . 7
2.4 Running the example . 7

iii

iv CONTENTS

List of Tables

1 Revision history . ix

1.1 UART2MAXILITE input and output ports 1
1.2 UART to Master AXI3 Lite interface registers table 2
1.3 Commands from UART . 3
1.4 Status characters . 3

v

vi LIST OF TABLES

List of Figures

1.1 UART2MAXILITE . 4

2.1 UART2MAXILITE in ZedBoard . 5

vii

viii LIST OF FIGURES

Introduction

This document describes UART2MAXILITE, the UART to Master AXI3 Lite inter-
face of the SecBus project. Chapter 1 is the user guide and presents the module on a
purely functional point of view. Chapter 2 gives examples of use of the interface on the
ZedBoard[5], a prototyping board based on the Xilinx Zynq core[4].

Revision history

Date Version Revision

2015-10-09 1.0 Initial release.
2015-10-23 1.1 Add STATUS register.

Table 1: Revision history

ix

x INTRODUCTION

Chapter 1

User guide

Introduction
This chapter presents the functional view of UART2MAXILITE, a UART to Master
AXI3 Lite interface. The reader interested in using the interface from a pure functional
perspective will find the description of the internal registers and their role.

1.1 Interface
UART2MAXILITE is a hardware component with a system clock and reset, two master
AXI ports (UART_AXI and MEM_AXI), an 8-bits general purpose input (GPI), an 8
bits general purpose output (GPO) and a synchronous active high reset (SRST). Table
1.1 lists the input and output ports.

Name Direction Bit-width DescriptionData Address

ACLK input 1 - System clock
ARESETN input 1 - System reset
SRST input 1 - Registers synchronous reset
UART_AXI - 32 12 AXI3 lite master interface with UART
MEM_AXI - 32 32 AXI3 lite master interface with memory

mapped device
GPI input 8 - General Purpose Input
GPO output 8 - General Purpose Output

Table 1.1: UART2MAXILITE input and output ports

1.2 Internal registers
UART2MAXILITE embeds a set of 8-bits internal registers. Table 1.2 lists the regis-
ters. Their default value is defined in the bitfield_pkg.vhd package. All registers
are initialized to their default value when the SRST synchronous reset is asserted high

1

2 CHAPTER 1. USER GUIDE

or when the system reset is asserted low. The difference between the two resets is that
the system reset also resets other registers (state registers of state machines...).

Table 1.2: UART to Master AXI3 Lite interface registers table

Name Address Dir. Description
a0 0x0 rw Byte 0 (least significant) of address
a1 0x1 rw Byte 1 of address
a2 0x2 rw Byte 2 of address
a3 0x3 rw Byte 3 (Most significant) of data
d0 0x4 rw Byte 0 (least significant) of data
d1 0x5 rw Byte 1 of data
d2 0x6 rw Byte 2 of data
d3 0x7 rw Byte 3 (Most significant) of data
status 0x8 r Copy of the status register of the UART. Error and TX

FIFO full bits are sticky.

The STATUS register is a copy of the UART status register that UART2MAXILITE
periodically reads to detect incomming characters from the UART. The 3 bits corre-
sponding to the parity, frame and overrun errors, plus the bit corresponding to TX FIFO
full are sticky: once set they can be deasserted only by the system or the synchronous
reset. The content of this register cannot be sent to the UART but it can however be
sent to the GPO if GPI is set to its index.

1.3 Functional description
UART2MAXILITE has two 32-bits master AXI3 lite interfaces. UART_AXI con-
nects to the Xilinx UART from which characters are received and sent. MEM_AXI
connects to a memory mapped device (MEM) and is used to perform read write ac-
cesses. UART2MAXILITE does not use interrupts to detect incoming characters from
the UART. Instead, it continuously polls the UART status register until the RX FIFO
Valid Data flag indicates that a character is available in the receive FIFO.

The characters received from the UART are commands. A command is one or two-
characters long, denoted C0 and C1 in the following. The commands and their binary
encoding is summarized in table1.3 where x represents a bit which value is ignored
while 0,1,W,A are meaningful bit values.

The address of MEM read and MEM write commands is given by registers a0
(least significant byte), a1, a2 and a3 (most significant byte). The data returned by a
MEM read command is stored in registers d0 (least significant byte), d1, d2, d3 (most
significant byte). The data written by a MEM write command is given by registers d0
(least significant byte), d1, d2, d3 (most significant byte).

After completion of a MEM read or MEM write command a status character is sent
to the UART. Table 1.4 lists the status characters.

The GPI general purpose input selects the value sent to the GPO general purpose
output: if GPI is a valid register address, the content of the register drives GPO. Else,
GPO is set to "00ASLBRT" where:

• A is the active low system reset

• S is the active high synchronous reset

1.3. FUNCTIONAL DESCRIPTION 3

C0 Command

xx00xxxx MEM read: launch a read access on AXI interface
MEM_AXI.

xx01WWWW MEM write: launch a write access on AXI inter-
face MEM_AXI. WWWW is the 4-bits byte enable (field
WSTRB of the AXI write request).

xx10xAAA Register read: send to UART the content of register at
address AAA.

xx11xAAA Register write: read next character (C1) from UART and
store it in register at address AAA.

Table 1.3: Commands from UART

Value Description

0 OKAY, last MEM_AXI request response was OKAY

2 SLVERR, last MEM_AXI request response was SLVERR

3 DECERR, last MEM_AXI request response was DECERR

Table 1.4: Status characters

• L is the active low local reset (combination of system and synchronous reset)

• B blinks every 225 clock cycles

• R is the registered RX line of the UART

• T is the registered TX line of the UART

Figure 1.1 represents the UART to Master AXI3 Lite interface.

4 CHAPTER 1. USER GUIDE

UART_AXI

MEM_AXI

GPI

AXI interface
UART to Master

AXI UART
To Xilinx

GPO

A0
A1
A2
A3
D0
D1
D2
D3

To memory mapped
AXI device MEM

STATUS

M
ul

tip
le

xo
r

RegistersSRST

Figure 1.1: UART2MAXILITE

Chapter 2

Application notes

2.1 Introduction
This application note proposes examples of use of UART2MAXILITE on the ZedBoard[5],
a prototyping board based on the Xilinx Zynq core[4].

Figure 2.1 represents UART2MAXILITE in its environment.

UART_AXI

MEM_AXI

S_AXI_HP0

PC1

PC2

U
SB

USB-UART
console

AXI interface
UART to Master

GPO

A0
A1
A2
A3
D0
D1
D2
D3

STATUS

M
ul

tip
le

xo
r

RegistersSRST

GPI

A
X

IU
A

R
T

X
ili

nx

DDR

BTNC

Switches

LEDs

CPU, MMU, caches,
interconnects,...

DDR
controller

Zynq core

ZedBoard

D
ig

ile
nt

U
SB

U
A

R
T

Pm
od

m
od

ul
e

PL

JA
Pm

od
co

nn
ec

to
r

PS

Figure 2.1: UART2MAXILITE in ZedBoard

A PC is attached to the Programmable Logic (PL) of the Zynq core of the Zed-
Board through a USB-A / micro-USB cable connected to a Digilent USB-to-UART
Pmod module. The Pmod module is plugged to the JA Pmod connector (top row of
the 12-pins connector) of the board. The PL is configured with a Xilinx AXI lite
UART and UART2MAXILITE. The serial interface of the Xilinx AXI lite UART
core is connected to the Pmod module. Its slave AXI interface is connected to the
UART_AXI master AXI interface of UART2MAXILITE. The other master AXI in-

5

6 CHAPTER 2. APPLICATION NOTES

terface of UART2MAXILITE, MEM_AXI, is connected to the DDR controller of
the Zynq. UART2MAXILITE repeatedly reads the characters received from the at-
tached PC, interprets them as commands, performs the requested memory accesses
using MEM_AXI and sends the result back to the PC through the UART and the Pmod
module. This set up allows to access the complete DDR of the ZedBoard1 from a laptop
or desktop PC.

The provided software example relies on libftdi[2] (the Digilent USB-to-UART
Pmod module is based on the FT232RQ chip from FTDIChip [1]).

The example has been tested with:

• Xilinx tools: Vivado 2015.3

• Hardware:

– Digilent ZedBoard revision C.

– Digilent Pmod USB UART kit 410-212

• Software:

– laptop running Debian jessie

– libftdi-dev 0.20-2

2.2 Content of the archive
C/ example software applications,

based on libftdi
data.txt text file used by ’make check’

target
Makefile type ’make’ for a list of

available targets
u2m_f2m.c transfer file to memory through

UART
u2m_lib.c utility functions
u2m_lib.h header file
u2m_m2f.c transfer memory to file through

UART
u2m_read.c read 32 bits word from memory and

print through UART
u2m_write.c write 32 bits word to memory

through UART
COPYING licence (English)
COPYING-FR license (français)
Makefile type ’make’ for a list of

available targets
README short description
syn.tcl synthesis script for Xilinx Vivado
uart2maxilite.pdf documentation
axi_pkg.vhd utility VHDL package: AXI protocol
bitfield_pkg.vhd utility VHDL package: interface

1Except the first MB for good technical reasons - please see the Xilinx Zynq Technical Reference Manual

2.3. INSTALLING 7

registers
global.vhd utility VHDL package: misc

functions
uart2maxilite_pkg.vhd .. utility VHDL package: constants,

commands...
uart2maxilite.vhd VHDL top level

2.3 Installing
First unpack the archive and synthesize the example design:

$ tar xf uart2maxilite.tgz
$ cd uart2maxilite
$ make syn

Prepare a SD card with a boot image containing a First Stage Boot Loader (FSBL),
the bitstream of the example design and a U-Boot ELF2. Add a Linux kernel, a device
tree blob and a root filesystem.

Alternately, use the SD card archive available on the SecBus website[3]. It already
contains a boot image, a Linux kernel, a device tree blob and a minimal root filesystem.

Insert the SD card in its slot on the ZedBoard and attach a PC (PC1 on figure 2.1),
to the USB UART connector of the ZedBoard (near the JTAG connector). Copy the
provided software source (sub-directory C) on a second PC (PC2 on figure 2.1)3. If
needed install the libftdi library on PC2 and compile the applications:

PC2> cd C
PC2> make all

2.4 Running the example
Plug the Digilent USB-UART Pmod module in the top row of the JA Pmod connector
of the ZedBoard (near the switches). Attach PC2 to the Pmod module.

Launch a serial console (minicom, cu, putty, screen...) on PC1, power up
the board and wait until the Linux kernel boots. The switches and the LEDs can be
used to observe the activity of the PL, as explained in chapter 1.

You are ready to access the DDR from PC2, through UART2MAXILITE: identify
a physical memory area in which you can read and write without interfering with the
running software (e.g. [0x1000_0000...0x1000_1000[) and load it with the
content of the data.txt example text file:

PC2> cd C
PC2> head -1 data.txt
"La Cryptographie Militaire", Auguste Kerckhoffs...
PC2> ./u2m_f2m 0x10000000 data.txt

Check that the load worked from the console on PC1 using, for instance, the Busy-
Box devmem applet:

2Please consult the Xilinx documentation if needed
3Of course, the same PC can be used, provided it has two USB ports

8 CHAPTER 2. APPLICATION NOTES

devmem 0x1000000 64
0x7079724320614C22 ("La Cryp)

From PC2 read back the content of the same memory area, store it in a second file
and compare with the provide example text file:

PC2> cd C
PC2> wc -m data.txt
672
PC2> ./u2m_m2f 0x10000000 672 data2.txt
PC2> head -1 data2.txt
"La Cryptographie Militaire", Auguste Kerckhoffs...
PC2> diff data.txt data2.txt
PC2>

Bibliography

[1] FTDI Chip: http://www.ftdichip.com/.

[2] libFTDI - FTDI USB driver with bitbang mode: https://www.intra2net.
com/en/developer/libftdi/.

[3] Secbus, a hardware / software architecture protecting the external memories of an
soc: https://secbus.telecom-paristech.fr/.

[4] Xilinx all programmable socs: http://www.xilinx.com/products/
silicon-devices/soc.html.

[5] Zedboard community-based web site: http://zedboard.org/.

9

http://www.ftdichip.com/
https://www.intra2net.com/en/developer/libftdi/
https://www.intra2net.com/en/developer/libftdi/
https://secbus.telecom-paristech.fr/
http://www.xilinx.com/products/silicon-devices/soc.html
http://www.xilinx.com/products/silicon-devices/soc.html
http://zedboard.org/

	Introduction
	User guide
	Interface
	Internal registers
	Functional description

	Application notes
	Introduction
	Content of the archive
	Installing
	Running the example

