AXI bridge documentation

August 14, 2015

ii

Contents

[Infroduction| ix
U guide; 1
LI Tnterfacel o oo 1
1.2 Internal registers| 2
......................... 3
|| 4 l:ayout of the internal reglsters| 4
2 Application notes| 7
2.1 Introduction| 7
[2.2 _Configuring the ZedBoard with the bridge| 8
3 Experiments|. 11
2.4 Errors, crashes and freezes| 12
[2.5 Building the whole example from scratch| 12

iii

v

CONTENTS

List of Tables

I Revision history| L L ix

I1.1 AXIbridge input and output ports|
1.2 AXIbridge generic parameters|

[1.3 AXIBridgeregisters table|

SN NS NS T

vi

LIST OF TABLES

List of Figures

TT AXIDdge] o oo o 5
1.2 AXI Bridge gpir register layout: General Purpose Input Register] . . 5
. ridge gpor register layout: General Purpose Output Register| . 5
|| 4 AXI Enage cfg register |ay0ut: ConFiC }uratlonl 5
2.1 AXIbridgeinZedBoard| 8
e Linux kernel booted through the ridge on a ZedBoard| . . . 10

vii

viii LIST OF FIGURES

Introduction

This document describes the AXI bridge of the SecBus project. Chapter [I]is the user
guide and presents the bridge on a purely functional point of view. Chapter [2] gives
examples of use of the bridge on the ZedBoard[2], a prototyping board based on the
Xilinx Zynq core[[1].

Revision history

Date Version Revision
2015-07-27 1.0 Initial release.

Table 1: Revision history

ix

INTRODUCTION

Chapter 1

User guide

Introduction

This chapter presents the functional view of the AXI bridge. The reader interested in
using the AXI bridge from a pure functional perspective will find the description of the
internal registers and their role.

1.1 Interface

The AXI bridge is a hardware component with a system clock and reset, two slave
AXI ports (SO_AXT and S1_AXT), one master AXI port (M_AXT), an 8-bits general
purpose input (GPI), an 8 bits general purpose output (GPO) and a active high, syn-
chronous, reset for its internal registers (SRST). Table [I.1] lists the input and output
ports.

Name Direction Bit-width Description

ACLK input 1 System clock

ARESETN input 1 System reset

SRST input 1 Registers synchronous reset
SO0_AXTI - - AXI lite slave interface
S1_AXI - - AXI slave interface

M_AXI - - AXI master interface

GPI input 8 General Purpose Input

GPO output 8 General Purpose Output

Table 1.1: AXI bridge input and output ports

The bridge can be customized with 3 generic parameters. Table[I.2]lists the generic
parameters. Their role and description is given in the following sections.

1

2 CHAPTER 1. USER GUIDE

Name Type Default

S1_AXI_ADDRESS_AND_MASK 32-bits vector Ox3fff_ ffff
S1_AXI_ADDRESS_OR_MASK 32-bits vector 0x0000_0000
SO_AXI_ADDRESS_WIDTH Integer 12

Table 1.2: AXI bridge generic parameters

1.2 Internal registers

The bridge contains 21 32-bits internal registers. When SRST is asserted high or when
the system reset is asserted low, the internal registers are reset to their default value.
The difference between the two resets is that the system reset also resets other registers
(state registers of state machines...).

The SO_AXT port is used to access the internal registers. The SO_AXI_ADDRESS_WIDTH
generic parameter defines the bit-width of the SO_AXT read and write addresses. Ac-
cessing an unmapped address with SO_AXT returns a DECERR AXI response.

Some internal registers are read-write and some are read-only. Writing a read-only
register returns a SLVERR AXI response. Some registers have reserved bits. They read
as zeroes and writing them has no effect.

The address map (relative to the base address of the SO_AXT port in the host sys-
tem), read-write attribute and short description of the internal registers is given in table

L3
Table 1.3: AXI Bridge registers table

Name Address Dir. | Description

gpir 0x40000000 | r Current value of GPI input (8 LSBs only)

gpor 0x40000004 | rw | Value sent on General Purpose Output when
GPI=0x01 (8 LSBs only)

msk 0x40000008 | rw | Used to compute the one-bit activity indicators
from the AXI transaction counters

aw 0x4000000c | r Counts the completed transactions on the Address
Write AXI channel

ar 0x40000010 | r Counts the completed transactions on the Address
Read AXI channel

w 0x40000014 | r Counts the completed transactions on the Write
data AXI channel

r 0x40000018 | r Counts the completed transactions on the Read
data AXI channel

b 0x4000001c | r Counts the completed transactions on the Write
response AXI channel

cfg 0x40000020 | rw | Configuration and status register

before_r | 0x40000024 | r Last rdata value before trigger

after_w 0x40000028 | r First wdata value after trigger

after_r 0x4000002¢ | r First rdata value after trigger

rtrig 0x40000030 | rw | First read data value of trigger pattern

rtrig2 0x40000034 | rw Second read data value of trigger pattern

1.3. FUNCTIONAL DESCRIPTION 3
Name Address Dir. | Description
rtrig3 0x40000038 | rw | Third read data value of trigger pattern
wtrig 0x4000003c | rw | First write data value of trigger pattern
wtrig2 0x40000040 | rw | Second write data value of trigger pattern
wtrig3 0x40000044 | rw | Third write data value of trigger pattern
ival 0x40000048 | rw | Value to inject
iread 0x4000004c | rw | The read value to overwrite during injection
fifo 0x40000050 | r FIFO read register

1.3 Functional description

The bridge forwards the AXI requests it receives on the S1_AXT port to the M_AXT
port and forwards the responses received on the M_AXT port to the S1_AXT port.
An address transform is applied to the S1_AXT read and write requests: the 32 bits
addresses are bitwise AND-masked with the S1_AXI_ADDRESS_AND_MASK 32 bits
generic parameter and then bitwise OR-masked with the S1_AXI_ADDRESS_OR_MASK
32 bits generic parameter:

M_AXI.AWADDR <= S1_AXI_ADDRESS_OR_MASK or
(SO_AXI.AWADDR and S1_AXI_ADDRESS_AND_MASK) ;

M_AXI.ARADDR <= S1_AXI_ADDRESS_OR_MASK or
(SO_AXI.ARADDR and S1_AXI_ADDRESS_AND_MASK) ;

The AW, AR, W, R and B registers are counters. They count the number of completed
transactions on the five AXI channels of the S1_AXT toM_AXT path. The value of MSK
is used to condense the counter values into 5 single bit indicators (AWI, ARI, WI, RI
and BI) by a AND-masking followed by a OR-reduction:

AWI <= or_reduce (MSK and AW);
ARI <= or_reduce (MSK and AR);
WI <= or_reduce (MSK and W);
RI <= or_reduce (MSK and R);
BI <= or_reduce (MSK and B);

The bridge offers two more features than simple forwarding of AXI requests and
responses:

e Capture in a FIFO the data read by the CPU on the S1_AXT port,
e Injection of a forget data on the S1_AXT port to replace a data read by the CPU.

These two features can be used to demonstrate the effect of attacks against the con-
tent of external memories (memory readout, memory bus sniffing, memory overwrit-
ing, memory bus injection...). The capture and the injection are triggered by two pro-
grammable sub-triggers: a read sub-trigger and a write sub-trigger. Each sub-trigger
compare the consecutive read (written) values on the S1_AXT port with a sequence
of reference values. The length of each reference sequence is programmable from O
(sub-trigger activated by default) to 3 (sub-trigger activated after 3 consecutive value
matches). When a comparison fails, the corresponding sub-trigger is reset and the
matching process restarts from the beginning. The global trigger is fired only when
the two sub-triggers are fired. The reference sequence lengths are defined by the

4 CHAPTER 1. USER GUIDE

CFG.NUMR and CFG.NUMW fields of the CFG register. The sequences of reference
values are defined in the RTRIG, RTRIG2 and RTRIG3 registers for the read sub-
trigger and in the WTRIG, WTRIG2 and WTRIG3 registers for the write sub-trigger.
The CFG.TEN, CFG.CEN and CFG. IEN flags are used to enable or disable the trig-
ger, capture and injection, respectively. They are automatically de-asserted when the
action they are enabling is done. A new trigger, capture and / or injection can be pro-
grammed by preparing a new trigger condition (CFG.NUMR, CFG.NUMW, RTRIGX,
WTRIGx) and re-enabling the trigger, capture and / or injection.

Captured read data are stored in a 20-words FIFO. The capture stops when the FIFO
is full. The content of the FIFO can be retrieved by reading the FIFO register. The
current status of the FIFO is given by the CFG.FFULL and CFG.FEMPTY read-only
flags.

Injection takes place when the trigger has been fired, a data is read from the S1_AXT
port and the read value matches the value stored in the TREAD register. The read value
is then replaced with the value stored in the TVAL register.

When set, the CFG.RST soft reset disables the trigger, capture and injection and
resets the capture FIFO to empty. CFG.RST is de-asserted automatically on the next
clock cycle.

Three more read-only registers (BEFORE_R, AFTER_W and AFTER_R) store the
last read value before the trigger is fired, the first written and read values after the
trigger is fired, respectively. They are read-only.

The least significant byte of GPIR always contains the current value of the GPI
primary input. Its value selects the value sent to the GPO primary output, as listed in
table['IZf] (where FFULL, FEMPTY, RSEQ, WSAQ, TEN, CEN and IEN are the fields
with same names in the CFG configuration register).

GPIR[7...0] GPO source

0x00 GPOR[7...0]

0x01 FFULL|FEMPTY|O|AWI |ARI |WI|RI|BI
0x02 RSEQ|WSEQ|O|TEN|CEN | IEN

other "01010101" (0x55)

Table 1.4: Value of GPO as a function of GPIR

Figure [T.T|represents the bridge.

1.4 Layout of the internal registers

The layout of the GPIR, GPOR and CFG registers is depicted in figures [1.2] [T.3] and
[[.4] The layout of the other registers is trivial.

1.4. LAYOUT OF THE INTERNAL REGISTERS

masking,
trigger,

——+ GPIL

v
Regisirs, |oe(y) | capture
_.capture. ... 8 injection

i=}

FIFO..... E

. [} AXI
SRST] bridge
Figure 1.1: AXI bridge
31 8 17 0

gpi

Figure 1.2: AXI Bridge gpir register layout: General Purpose Input Register

31 8 7 0

gpo

Figure 1.3: AXI Bridge gpor register layout: General Purpose Output Register

31 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 4 3 2 10

Figure 1.4: AXI Bridge cfg register layout: ConFiGuration

ffull
rseq
ien
cen
ten
st

wseq

fempty
numw

numr

CHAPTER 1. USER GUIDE

Chapter 2

Application notes

2.1 Introduction

This application note proposes examples of use of the bridge on the ZedBoard[2], a
prototyping board based on the Xilinx Zynq core[ll]. The AXI bridge is integrated in
the Programmable Logic (PL) of the Zynq core and, just like the AXI simple bridge,
creates an Alternate Address Space (AAS) for the ARM processor of the Processing
System (PS) of the Zynq by routing its read-write requests to the DDR memory back
and forth. The capture and injection capabilities of the bridge are used to demonstrate
the effect of attacks against the content of external memories (memory readout, mem-
ory bus sniffing, memory overwriting, memory bus injection...).

Figure 2. 1| represents the bridge in its environment.

The 4GB address space of the ARM processor is split in four 1GB sub-spaces. The
bridge makes use of 3 of them:

e [0OGB..1GB[: Regular Address Space (RAS). The direct access to the DDR
controller falls in RAS.

e [1GB..2GB[: Control Address Space (CAS). Used by the processor to access
the internal registers of the bridge. All processor requests in CAS are sent to
AXI master port M_AXI_GPO of the PS which is connected to the AXI slave
port SO_AXT of the bridge in the PL.

e [2GB..3GB][: Alternate Address Space (AAS). Used by the processor to access
the DDR controller through the bridge in the PL. All processor requests in AAS
are sent to AXI master port M_AXTI_GP1 of the PS which is connected to the
AXI slave port S1_AXT of the bridge in the PL.

The bridge forwards the AXI requests received from its S1_AXTI AXI slave port to its
M_AXI AXI master port, with a 2GB address down-shift that brings the addresses
back in the RAS. This is done automatically when using the default values of the
S1_AXI_ADDRESS_AND_MASKand S1_AXI_ADDRESS_OR_MASK generic param-
eters. The M_AXT port is connected to the S_AXI_HPO slave port of the PS. This
way, when the processor accesses a memory location in the AAS, it is exactly like if it
was addressing the equivalent location in RAS, except that the AXI transactions flow
through the bridge in the PL.

8 CHAPTER 2. APPLICATION NOTES

ZedBoard RAS: Regular Address Space ([0..1G[)
CAS: Control Address Space ([1G..2G[) DDR
AAS: Alternate Address Space ([2G..3G[) 4
i
PS v
. RAS DDR
CPU, MMU, caches, interconnects,... [
controller
% CAS % AAS @ RAS
‘ M_AXI_GPO ‘ ‘ M_AXI_GP1 ‘ ‘ S_AXI_HPO ‘
Zynq core %
PL ‘ SO_AXI ‘ ‘ S1_AXI ‘ ‘ M_AXI ‘

;

: | Registers, -
LEDs j<+—capture....
-------FIFO-----

Address
masking,
trigger,
capture,
injection

(Swies)1

Counters

BTNC SRST } AXI
= bridge

Figure 2.1: AXI bridge in ZedBoard

The GPI primary input is connected to the 8 switches of the ZedBoard, the GPO
primary output is connected to the 8 user LEDs and the SRST synchronous reset of
the internal registers is connected to the centre button of the 5 press buttons pad. So,
pressing the centre button of the 5 buttons pad of the ZedBoard resets the internal
registers.

Thanks to this, the AR, AW, W, R and B AXI activity indicators drive the LEDs
in the GPIR=0x01 mode and it is thus possible to observe the S1_AXTI to M_AXTI
activity. Writting 8 to the MSK register, for instance, will force the LEDs to blink every
8 transactions when the switches (GPI) are in the 0x01 configuration. Of course, if
the MSK register is left to its reset value (0), no activity will be visible.

Important note: thanks to the bridge the complete 1GB RAS is also mapped to
a 1GB AAS. On Zyng-based boards that do not map this entire RAS GB (like, for
instance, the ZedBoard with only 512 MB of DDR), the unmapped region in RAS
has a corresponding unmapped region in AAS. Accessing one or the other will lead
to unexpected results (aliasing or errors). Moreover, depending on the configuration,
some Zynq systems have a reserved low addresses range that cannot be accessed from
the S_AXTI_HP ports. In these systems this low range can be accessed in the RAS but
not in the AAS.

2.2 Configuring the ZedBoard with the bridge

The provided SD card archive contains all files needed to run a busybox on top of the
Linux kernel with all memory accesses routed to the AXI bridge in the PL. The device
tree blob (and sources), the Linux kernel image and the U-Boot environment variables

2.2. CONFIGURING THE ZEDBOARD WITH THE BRIDGE 9

definitions are customized such that the available DDR memory seen by the Linux
kernel is entirely in the AAS and limited to the [0x8800_0000, 0xa000_0000 [
range. The first 128 MB ([0x8000_0000, 0x8800_0000 [) is excluded for good
technical reasons that are out of the scope of this note.

The SD card archive content is:

.bashrc Initialization script
(aliases definitions)
boot.bin zyng boot image (FSBL,
bitstream and U-Boot)
COPYING .o viiiiiinnnnnnnn License (English)
COPYING-FR .. i iviiiinennn Licence (French)
devicetree.dtb Linux device tree blob
doc/
axi_bridge.pdf This document
bitstream.bit Bitstream
dts/ .t e Device tree sources
device-tree.mss
pl.dtsi
skeleton.dtsi
system.dts Default device tree
system.dts.edited ... Modified device tree
zyng-7000.dtsi
fsbl.elf First Stage Boot Loader ELF
system.sysdef System definition
u-boot.elf U-Boot ELF
uEnv.txt ... oo U-Boot environment variables
definitions
UIMage & vv i vt e eeeeenns Linux kernel image for U-Boot
uramdisk.image.gz Ramdisk image for U-Boot (simple

file system with busybox)

Note: only .bashrc, boot.bin, devicetree.dtb, uEnv.txt, ulmage
and uramdisk. image. gz are needed. The other files are provided for information
and to allow to re-generate the device tree and the software components.

e Download the SD card archive from the SecBus website (https://secbus.
telecom-paristech.fr/).

e Format a SD card with a FAT32 first primary partition (and other partitions if
you wish), make sure the partition is large enough to store the unpacked archive.

e Mount the FAT32 partition on your PC.
e Unpack the archive in the mount point.
e Unmount the SD card.

o Configure the ZedBoard jumpers to boot from SD card (set MIO4 and MIOS5,
unset MI02, MIO3 and MI06), insert the SD card, plug the power and console
USB cable and power on.

https://secbus.telecom-paristech.fr/
https://secbus.telecom-paristech.fr/

10 CHAPTER 2. APPLICATION NOTES

e Launch a terminal emulator like minicom (minicom -D /dev/ttyACMO),
wait until Linux boots (figure [2.2)) and start interacting with the bridge. Several
aliases are defined for easier access to the internal registers (see the welcome
banner). The running busybox has the devmem applet built in, so accessing
physical addresses can also be done using devmem.

/

)
Tl v W e b B PR
i
°3 £ S - Y, 4 I Se o /
(C) Telecom ParisTech

https: //sechus. telecom-paristech.fr/

AXI bridge commands:
<reg-name>: read register <reg-name>
<reg-name> <val>: write <val> in register <reg-name>
Read-only registers
gpir, aw, ar, w, r, b, bhefore r, after w, after r,
fifo
Read-write registers:
gpor, msk, cfg, rtrig, rtrig2, rtrig3, wtrig,
wtrig2, wtrig3, ival, iread

| GPOR[7:0]

| FFULL|FEMPTY|®|AWI | ARI |WI|RI|BI
| RSEQ|WSEQ|®|TEN|CEN|IEN

| 91018181 (8x55)

............ e A N P e e e e
where AWL,ARI,WI,RI and BI are condensed 1-bit
indicators obtained by masking (bitwise hoolean
AND) AW,AR,W,R and B respectively with MSK and
computing the boolean OR of the 32-bits result.
FFULL, FEMPTY,RSEQ,WSEQ, TEN, CEN, IEN are the
fields with same names in CFG.

0ffline

' B

Figure 2.2: The Linux kernel booted through the AXI bridge on a ZedBoard

Note: the CPU caches (L1 and L2) are disabled for better observability of the CPU
memory accesses. Of course, this slows the CPU down; please be patient when the
Linux kernel boots and loads the ramdisk image...

Note: the SD card partition from which the system booted is mounted on /mnt, so,
if you added some custom files on the SD card, they are in /mnt.

Note: the provided bitstream embeds a Chipscope Integrated Logic Analyser (ILA)
core monitoring the signals of the M_AXT port. It is thus possible to observe these
signals from Vivado.

2.3. EXPERIMENTS 11

2.3 Experiments

First test the design in the PL by setting the switches to any configuration other than

0x00 and 0x01 (e.g. 0x02) and looking at the LEDs: if the LEDs illuminate in the 0x55

configuration things are probably OK, else the PL does not work as expected.
Reading the current status of the 8 switches:

zyng> gpir
0x00000002

Illuminating the 8 LEDs (first set the switches to 0x00):
zyng> gpor OxFF

Configure the MSK register so that the LEDs blink every AXI transaction (set the
switches to 0x01 so that it takes a visible effect):

zyng> msk 1

Reading the number of AXI read address requests and read responses to/from the
DDR through the FPGA fabric since the beginning (returned values can be different):

zyng> arcnt
0x0084F9BE
zyng> rcnt
0x021AFDBS8

Reading a 32-bits word in the DDR through the FPGA fabric (the LEDs corre-
sponding to the AR and R transaction counters should blink):

zyng> devmem 0x90000000 32
0x5A51051D

Checking again the number of AXI read address requests and read responses:

zyng> arcnt
0x0085D059
zyng> rcnt
0x02312193

Writing a 32-bits word in the DDR through the FPGA fabric (could crash the sys-
tem because we do not check first that the corresponding address in the regular address
space is not used; but let us try and see what happens, the LEDs corresponding to the
AW, W and B transaction counters should blink):

zyng> devmem 0x90000000 32 OxAAAAAAAA
Reading it again:

zyng> devmem 0x90000000 32
OxAAAAAARMA

Checking the number of AXI read address requests, write address requests, write
data requests, read responses and write responses:

12 CHAPTER 2. APPLICATION NOTES

zyng> arcnt
0x00864F51
zyng> awcnt
0x00953812
zyng> wcnt
0x01CB8965
zyng> rcnt
0x0247D47B
zyng> bcnt
0x0086CEBS

Power off

zyng> poweroff

The system is going down NOW!
Sent SIGTERM to all processes
Sent SIGKILL to all processes
Requesting system poweroff
reboot: System halted

2.4 Errors, crashes and freezes

If you play a bit with the bridge an perform read and write accesses randomly with
devmem, you will probably encounter some problems (errors, crashes, freezes and
other undesirable behaviours):

e First, as explained above, accessing unmapped addresses in CAS or writing a
read-only register raises an error.

e But you can also overwrite an important memory location, currently used by the
Linux kernel. And you can do this using one or the other of the two equivalent
AAS and RAS.

e Last but not least, you can also fall in an address range that is mapped in RAS
but not in AAS. Indeed, due to the specificities of the Zynq architecture, AAS
and RAS are not strictly equivalent. Avoiding accesses to the first MB of AAS
([0x8000_0000..0x8010_0000 [) should protect you against this.

2.5 Building the whole example from scratch

If you have a SecBus distribution already installed:

$ cd secbus/vhdl/hsm/src/axi_bridge
$ make help

and follow the instructions.

Bibliography

[1] Xilinx all programmable socs: http://www.xilinx.com/products/
silicon-devices/soc.htmll

[2] Zedboard community-based web site: http://zedboard.org/k

13

http://www.xilinx.com/products/silicon-devices/soc.html
http://www.xilinx.com/products/silicon-devices/soc.html
http://zedboard.org/

	Introduction
	User guide
	Interface
	Internal registers
	Functional description
	Layout of the internal registers

	Application notes
	Introduction
	Configuring the ZedBoard with the bridge
	Experiments
	Errors, crashes and freezes
	Building the whole example from scratch

