The material is made available under the **GNU General Public License v3.0**: Copyright 2020, Emanuele Dalsasso, Loïc Denis, Florence Tupin, of LTCI research lab - Télécom ParisTech, an Institut Mines Télécom school.
title={SAR Image Despeckling by Deep Neural Networks: from a pre-trained model to an end-to-end training strategy},
author={Emanuele Dalsasso and Xiangli Yang and Loïc Denis and Florence Tupin and Wen Yang},
journal={arXiv preprint arXiv:2006.15559},
year={2020}
}
## Licence
The material is made available under the **GNU General Public License v3.0**: Copyright 2020, Emanuele Dalsasso, Loïc Denis, Florence Tupin, of LTCI research lab - Télécom ParisTech, an Institut Mines Télécom school.
<ahref="https://colab.research.google.com/github/emanueledalsasso/SAR-CNN/blob/master/SAR_CNN_test.ipynb"target="_parent"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"/></a>
**[Download the notebook](https://gitlab.telecom-paris.fr/ring/SAR-CNN/-/raw/master/SAR_CNN_test.ipynb?inline=false) and then import it under Google Colab**
<ahref="https://colab.research.google.com/"target="_parent"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"/></a>
%% Cell type:markdown id: tags:
# SAR Image Despeckling by Deep Neural Networks: from a pre-trained model to an end-to-end training strategy
The code is made available under the **GNU General Public License v3.0**: Copyright 2020, Emanuele Dalsasso, Loïc Denis, Florence Tupin, of LTCI research lab - Télécom ParisTech, an Institut Mines Télécom school.
All rights reserved.
Please note that the training set is only composed of **Sentinel-1** SAR images, thus this testing code is specific to this data.