Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/**Copyright or (C) or Copr. GET / ENST, Telecom-Paris, Ludovic Apvrille
*
* ludovic.apvrille AT enst.fr
*
* This software is a computer program whose purpose is to allow the
* edition of TURTLE analysis, design and deployment diagrams, to
* allow the generation of RT-LOTOS or Java code from this diagram,
* and at last to allow the analysis of formal validation traces
* obtained from external tools, e.g. RTL from LAAS-CNRS and CADP
* from INRIA Rhone-Alpes.
*
* This software is governed by the CeCILL license under French law and
* abiding by the rules of distribution of free software. You can use,
* modify and/ or redistribute the software under the terms of the CeCILL
* license as circulated by CEA, CNRS and INRIA at the following URL
* "http://www.cecill.info".
*
* As a counterpart to the access to the source code and rights to copy,
* modify and redistribute granted by the license, users are provided only
* with a limited warranty and the software's author, the holder of the
* economic rights, and the successive licensors have only limited
* liability.
*
* In this respect, the user's attention is drawn to the risks associated
* with loading, using, modifying and/or developing or reproducing the
* software by the user in light of its specific status of free software,
* that may mean that it is complicated to manipulate, and that also
* therefore means that it is reserved for developers and experienced
* professionals having in-depth computer knowledge. Users are therefore
* encouraged to load and test the software's suitability as regards their
* requirements in conditions enabling the security of their systems and/or
* data to be ensured and, more generally, to use and operate it in the
* same conditions as regards security.
*
* The fact that you are presently reading this means that you have had
* knowledge of the CeCILL license and that you accept its terms.
*
* /**
* Class AvatarTreePanelTranslator
* Creation: 13/04/2015
* @author Ludovic APVRILLE
* @see
*/
package ui;
import java.util.*;
import myutil.*;
import ui.atd.*;
import attacktrees.*;
//import translator.*;
import ui.window.*;
public class AttackTreePanelTranslator {
protected AttackTreePanel atp;
protected Vector checkingErrors, warnings;
protected CorrespondanceTGElement listE; // usual list
//protected CorrespondanceTGElement listB; // list for particular element -> first element of group of blocks
protected LinkedList <TDiagramPanel> panels;
public AttackTreePanelTranslator(AttackTreePanel _atp) {
atp = _atp;
reinit();
}
public void reinit() {
checkingErrors = new Vector();
warnings = new Vector();
listE = new CorrespondanceTGElement();
panels = new LinkedList <TDiagramPanel>();
}
public Vector getCheckingErrors() {
return checkingErrors;
}
public Vector getWarnings() {
return warnings;
}
public CorrespondanceTGElement getCorrespondanceTGElement() {
return listE;
}
public AttackTree translateToAttackTreeDataStructure() {
at = new AttackTree("AttackTree", atp);
for(TDiagramPanel panel: atp.panels) {
if (panel instanceof AttackTreeDiagramPanel) {
translate((AttackTreeDiagramPanel)panel);
}
}
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
TraceManager.addDev("AT=" + at.toString());
return at;
}
public void translate(AttackTreeDiagramPanel atdp) {
LinkedList<TGComponent> allComponents = (LinkedList<TGComponent>)(atdp.getAllComponentList());
int nodeID = 0;
//Create attacks, nodes
for(TGComponent comp: allComponents) {
if (comp instanceof ATDAttack) {
ATDAttack atdatt = (ATDAttack)comp;
Attack att = new Attack(atdatt.getValue(), atdatt);
att.setRoot(atdatt.isRootAttack());
at.addAttack(att);
listE.addCor(att, comp);
}
if (comp instanceof ATDConstraint) {
ATDConstraint cons = (ATDConstraint)comp;
nodeID ++;
//OR
if (cons.isOR()) {
ORNode ornode = new ORNode("OR__" + nodeID, cons);
at.addNode(ornode);
listE.addCor(ornode, comp);
//AND
} else if (cons.isAND()) {
ANDNode andnode = new ANDNode("AND__" + nodeID, cons);
at.addNode(andnode);
listE.addCor(andnode, comp);
//SEQUENCE
} else if (cons.isSequence()) {
SequenceNode seqnode = new SequenceNode("SEQUENCE__" + nodeID, cons);
at.addNode(seqnode);
listE.addCor(seqnode, comp);
//BEFORE
} else if (cons.isBefore()) {
String eq = cons.getEquation();
int time;
try {
time = Integer.decode(eq).intValue();
BeforeNode befnode = new BeforeNode("BEFORE__" + nodeID, cons, time);
at.addNode(befnode);
listE.addCor(befnode, comp);
} catch (Exception e) {
CheckingError ce = new CheckingError(CheckingError.STRUCTURE_ERROR, "Invalid time in before node");
ce.setTGComponent(comp);
ce.setTDiagramPanel(atdp);
addCheckingError(ce);
}
//AFTER
} else if (cons.isAfter()) {
String eq = cons.getEquation();
int time;
try {
time = Integer.decode(eq).intValue();
BeforeNode befnode = new BeforeNode("AFTER__" + nodeID, cons, time);
at.addNode(befnode);
listE.addCor(befnode, comp);
} catch (Exception e) {
CheckingError ce = new CheckingError(CheckingError.STRUCTURE_ERROR, "Invalid time in after node");
ce.setTGComponent(comp);
ce.setTDiagramPanel(atdp);
addCheckingError(ce);
}
} else {
CheckingError ce = new CheckingError(CheckingError.STRUCTURE_ERROR, "Invalid attack node");
ce.setTGComponent(comp);
ce.setTDiagramPanel(atdp);
addCheckingError(ce);
}
}
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// Making connections between nodes&attacks
TGComponent tgc1, tgc2;
for(TGComponent comp: allComponents) {
if (comp instanceof ATDAttackConnector) {
ATDAttackConnector con = (ATDAttackConnector)(comp);
tgc1 = atdp.getComponentToWhichBelongs(con.getTGConnectingPointP1());
tgc2 = atdp.getComponentToWhichBelongs(con.getTGConnectingPointP2());
if ( ((tgc1 instanceof ATDAttack) || (tgc1 instanceof ATDConstraint)) &&
((tgc2 instanceof ATDAttack) || (tgc2 instanceof ATDConstraint)) ) {
try {
// We must transpose this into attack -> node or node -> attack
// Attack -> attack
if ((tgc1 instanceof ATDAttack) && (tgc2 instanceof ATDAttack)) {
// We link the two attacks with an "and" node
Attack at1 = (Attack)(listE.getObject(tgc1));
Attack at2 = (Attack)(listE.getObject(tgc2));
nodeID ++;
ANDNode andnode = new ANDNode("ANDBetweenAttacks__" + nodeID + "__" + at1.getName() + "__" + at2.getName(), tgc1);
at.addNode(andnode);
listE.addCor(andnode, comp);
at1.addDestinationNode(andnode);
at2.setOriginNode(andnode);
andnode.addInputAttack(at1, new Integer("0"));
andnode.setResultingAttack(at2);
// Attack -> node
} else if ((tgc1 instanceof ATDAttack) && (tgc2 instanceof ATDConstraint)) {
Attack at1 = (Attack)(listE.getObject(tgc1));
AttackNode node1 = (AttackNode)(listE.getObject(tgc2));
at1.addDestinationNode(node1);
String val = comp.getValue().trim();
if (val.length() == 0) {
val = "0";
}
node1.addInputAttack(at1, new Integer(val));
// Node -> attack
} else if ((tgc1 instanceof ATDConstraint) && (tgc2 instanceof ATDAttack)) {
Attack at1 = (Attack)(listE.getObject(tgc2));
AttackNode node1 = (AttackNode)(listE.getObject(tgc1));
at1.setOriginNode(node1);
if (node1.getResultingAttack() != null) {
// Already a resulting attack -> error
CheckingError ce = new CheckingError(CheckingError.STRUCTURE_ERROR, "Too many resulting attacks");
ce.setTGComponent(tgc1);
ce.setTDiagramPanel(atdp);
addCheckingError(ce);
} else {
node1.setResultingAttack(at1);
}
// Node -> Node
} else if ((tgc1 instanceof ATDConstraint) && (tgc2 instanceof ATDConstraint)) {
AttackNode node1 = (AttackNode)(listE.getObject(tgc1));
AttackNode node2 = (AttackNode)(listE.getObject(tgc2));
// Make fake attack
Attack att = new Attack("Attack__from_" + node1.getName() + "_to_" + node2.getName(), tgc1);
att.setRoot(false);
at.addAttack(att);
listE.addCor(att, comp);
att.setOriginNode(node1);
att.addDestinationNode(node2);
if (node1.getResultingAttack() != null) {
// Already a resulting attack -> error
CheckingError ce = new CheckingError(CheckingError.STRUCTURE_ERROR, "Too many resulting attacks");
ce.setTGComponent(tgc1);
ce.setTDiagramPanel(atdp);
addCheckingError(ce);
} else {
node1.setResultingAttack(att);
}
node2.addInputAttack(att, new Integer(0));
}
} catch (Exception e) {
CheckingError ce = new CheckingError(CheckingError.STRUCTURE_ERROR, "Badly formed connector");
ce.setTGComponent(comp);
ce.setTDiagramPanel(atdp);
addCheckingError(ce);
}
}
public AvatarSpecification generateAvatarSpec() {
AvatarSpecification as = new AvatarSpecification("spec from attack trees", atp);
// One block per attacknode to receive the attack
// One block per attack -> syncho
// One mast block with all channels declared at that level
AvatarBlock mainBlock = new AvatarBlock("MainBlock", null);
as.addBlock(mainBlock);
// Make block for attacks
makeAttackBlocks(as, mainBlock);
// Make blocks for nodes
makeAttackNodeBlocks(as, mainBlock);
private void makeAttackBlocks(AvatarSpecification _as, AvatarBlock _main) {
int attackID = 0;
for(Attack attack: at.getAttacks()) {
// Make the block
AvatarBlock ab = new AvatarBlock(attack.getName() + attackID, listE.getTG(attack));
_as.addBlock(ab);
//ab.setFather(_main);
avatartranslator.AvatarSignal sigAttack = new avatartranslator.AvatarSignal("accept__" + attack.getName() + attackID, AvatarSignal.IN, (Object)(listE.getTG(attack)));
ab.addSignal(sigAttack);
avatartranslator.AvatarSignal stopAttack = new avatartranslator.AvatarSignal("acceptStopAttack__" + attack.getName() + attackID, AvatarSignal.IN, listE.getTG(attack));
ab.addSignal(stopAttack);
avatartranslator.AvatarSignal sigAttackMain = new avatartranslator.AvatarSignal("make__" + attack.getName() + attackID, AvatarSignal.OUT, listE.getTG(attack));
_main.addSignal(sigAttackMain);
avatartranslator.AvatarSignal stopAttackMain = new avatartranslator.AvatarSignal("stopAttack__" + attack.getName() + attackID, AvatarSignal.OUT, listE.getTG(attack));
_main.addSignal(stopAttackMain);
makeAttackBlockSMD(ab, sigAttack, stopAttack, listE.getTG(attack));
// Add the relations
AvatarRelation ar = new AvatarRelation("main_to_" + attack.getName() + attackID, _main, ab, listE.getTG(attack));
ar.setAsynchronous(false);
ar.setPrivate(true);
ar.setBroadcast(false);
ar.addSignals(sigAttackMain, sigAttack);
ar.addSignals(stopAttackMain, stopAttack);
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
_as.addRelation(ar);
attackID ++;
}
}
private void makeAttackBlockSMD(AvatarBlock _ab, avatartranslator.AvatarSignal _sigAttack, avatartranslator.AvatarSignal _sigStop, Object _ref) {
AvatarStateMachine asm = _ab.getStateMachine();
AvatarStartState start = new AvatarStartState("start", _ref);
AvatarState mainState = new AvatarState("main", _ref, false);
AvatarState mainStop = new AvatarState("myStop", _ref, false);
AvatarActionOnSignal getMake = new AvatarActionOnSignal("GettingAttack", _sigAttack, _ref);
AvatarActionOnSignal getStop = new AvatarActionOnSignal("GettingStop", _sigStop, _ref);
asm.addElement(start);
asm.setStartState(start);
asm.addElement(mainState);
asm.addElement(mainStop);
asm.addElement(getMake);
asm.addElement(getStop);
AvatarTransition at = new AvatarTransition("at1", _ref);
asm.addElement(at);
start.addNext(at);
at.addNext(mainState);
at = new AvatarTransition("at2", _ref);
asm.addElement(at);
mainState.addNext(at);
at.addNext(getMake);
at = new AvatarTransition("at3", _ref);
asm.addElement(at);
getMake.addNext(at);
at.addNext(mainState);
at = new AvatarTransition("at4", _ref);
asm.addElement(at);
mainState.addNext(at);
at.addNext(getStop);
at = new AvatarTransition("at5", _ref);
asm.addElement(at);
getStop.addNext(at);
at.addNext(mainStop);
}
private void makeAttackNodeBlocks(AvatarSpecification _as, AvatarBlock _main) {
}
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
/*public void createBlocks(AvatarSpecification _as, LinkedList<AvatarBDBlock> _blocks) {
AvatarBlock ab;
Vector v;
TAttribute a;
int i;
AvatarAttribute aa;
ui.AvatarMethod uiam;
ui.AvatarSignal uias;
avatartranslator.AvatarMethod atam;
avatartranslator.AvatarSignal atas;
TGComponent tgc1, tgc2;
Vector types;
for(AvatarBDBlock block: _blocks) {
ab = new AvatarBlock(block.getBlockName(), block);
_as.addBlock(ab);
listE.addCor(ab, block);
block.setAVATARID(ab.getID());
// Create attributes
v = block.getAttributeList();
for(i=0; i<v.size(); i++) {
a = (TAttribute)(v.elementAt(i));
if (a.getType() == TAttribute.INTEGER){
addRegularAttribute(ab, a, "");
} else if (a.getType() == TAttribute.NATURAL){
addRegularAttribute(ab, a, "");
} else if (a.getType() == TAttribute.BOOLEAN) {
addRegularAttribute(ab, a, "");
} else if (a.getType() == TAttribute.TIMER) {
addRegularAttribute(ab, a, "");
} else {
// other
//TraceManager.addDev(" -> Other type found: " + a.getTypeOther());
types = adp.getAvatarBDPanel().getAttributesOfDataType(a.getTypeOther());
if (types == null) {
CheckingError ce = new CheckingError(CheckingError.STRUCTURE_ERROR, "Unknown data type: " + a.getTypeOther() + " used in " + ab.getName());
ce.setAvatarBlock(ab);
ce.setTDiagramPanel(adp.getAvatarBDPanel());
addCheckingError(ce);
return;
} else {
if (types.size() ==0) {
CheckingError ce = new CheckingError(CheckingError.STRUCTURE_ERROR, "Data type definition must contain at least one attribute: " + ab.getName());
ce.setAvatarBlock(ab);
ce.setTDiagramPanel(adp.getAvatarBDPanel());
addCheckingError(ce);
} else {
for(int j=0; j<types.size(); j++) {
addRegularAttribute(ab, (TAttribute)(types.elementAt(j)), a.getId() + "__");
}
}
}
}
}
// Create methods
v = block.getMethodList();
for(i=0; i<v.size(); i++) {
uiam = (AvatarMethod)(v.get(i));
atam = new avatartranslator.AvatarMethod(uiam.getId(), uiam);
atam.setImplementationProvided(uiam.isImplementationProvided());
ab.addMethod(atam);
makeParameters(ab, atam, uiam);
makeReturnParameters(ab, block, atam, uiam);
}
// Create signals
v = block.getSignalList();
for(i=0; i<v.size(); i++) {
uias = (AvatarSignal)(v.get(i));
if (uias.getInOut() == uias.IN) {
atas = new avatartranslator.AvatarSignal(uias.getId(), avatartranslator.AvatarSignal.IN, uias);
} else {
atas = new avatartranslator.AvatarSignal(uias.getId(), avatartranslator.AvatarSignal.OUT, uias);
}
ab.addSignal(atas);
makeParameters(ab, atas, uias);
}
// Put global code
ab.addGlobalCode(block.getGlobalCode());
}
// Make block hierarchy
for(AvatarBlock block: _as.getListOfBlocks()) {
tgc1 = listE.getTG(block);
if ((tgc1 != null) && (tgc1.getFather() != null)) {
tgc2 = tgc1.getFather();
ab = listE.getAvatarBlock(tgc2);
if (ab != null) {
block.setFather(ab);
}
}
}
}*/
//TraceManager.addDev("Size of vector:" + v.size());
for(i=0; i<v.size(); i++) {
aa = _ab.getAvatarAttributeWithName((String)(v.get(i)));
if (aa == null) {
CheckingError ce = new CheckingError(CheckingError.BEHAVIOR_ERROR, "Badly formed parameter: " + _name + " in signal expression: " + _idOperator);
ce.setAvatarBlock(_ab);
ce.setTDiagramPanel(_tdp);
ce.setTGComponent(_tgc);
addCheckingError(ce);
return ;
} else {
//TraceManager.addDev("-> Adding attr in action on signal in block " + _ab.getName() + ":" + _name + "__" + tatmp.getId());
_aaos.addValue((String)(v.get(i)));
}
}
private void addCheckingError(CheckingError ce) {
if (checkingErrors == null) {
checkingErrors = new Vector();
}
checkingErrors.addElement(ce);
}
private void addWarning(CheckingError ce) {
if (warnings == null) {
warnings = new Vector();
}
warnings.addElement(ce);
}