Newer
Older
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
return delayDueTosimTraces;
}
// get the details of the delay for a selected min or max delay row
public void getRowDetailsMinMax(int row) {
String task12 = (String) dataByTaskMinMax[row][0];
int minTime = (int) dataByTaskMinMax[row][1];
String task22 = (String) dataByTaskMinMax[row][2];
int maxTime = (int) dataByTaskMinMax[row][3];
HashMap<String, ArrayList<SimulationTransaction>> relatedHWs = new HashMap<String, ArrayList<SimulationTransaction>>();
HashMap<String, ArrayList<SimulationTransaction>> relatedTasks = new HashMap<String, ArrayList<SimulationTransaction>>();
relatedsimTraces = new Vector<SimulationTransaction>();
delayDueTosimTraces = new Vector<SimulationTransaction>();
runnableTimePerDevice = new HashMap<String, ArrayList<ArrayList<Integer>>>();
// AllDirectedPaths<String, DefaultEdge> allPaths = new AllDirectedPaths<String,
// DefaultEdge>(g);
// List<GraphPath<String, DefaultEdge>> path = allPaths.getAllPaths(task12,
// task22, false, g.vertexSet().size());
// int size = path.size();
GraphPath<vertex, DefaultEdge> path2 = DijkstraShortestPath.findPathBetween(g, getvertex(task12), getvertex(task22));
if (path2 != null && path2.getLength() > 0) {
for (Entry<String, ArrayList<String>> entry : channelPaths.entrySet()) {
String ChannelName = entry.getKey();
ArrayList<String> busChList = entry.getValue();
GraphPath<vertex, DefaultEdge> pathTochannel = DijkstraShortestPath.findPathBetween(g, getvertex(task12), getvertex(ChannelName));
GraphPath<vertex, DefaultEdge> pathFromChannel = DijkstraShortestPath.findPathBetween(g, getvertex(ChannelName), getvertex(task22));
if (pathTochannel != null && pathTochannel.getLength() > 0 && pathFromChannel != null && pathFromChannel.getLength() > 0) {
devicesToBeConsidered.addAll(busChList);
}
}
} else {
for (Entry<String, ArrayList<String>> entry : channelPaths.entrySet()) {
String ChannelName = entry.getKey();
ArrayList<String> busChList = entry.getValue();
GraphPath<vertex, DefaultEdge> pathTochannel = DijkstraShortestPath.findPathBetween(g, getvertex(task12), getvertex(ChannelName));
GraphPath<vertex, DefaultEdge> pathFromChannel = DijkstraShortestPath.findPathBetween(g, getvertex(ChannelName), getvertex(task22));
if ((pathTochannel != null && pathTochannel.getLength() > 0) || (pathFromChannel != null && pathFromChannel.getLength() > 0)) {
devicesToBeConsidered.addAll(busChList);
}
}
}
for (SimulationTransaction st : transFile) {
Boolean onPath = false;
if (!(Integer.valueOf(st.startTime) < minTime && Integer.valueOf(st.endTime) < minTime)
&& !(Integer.valueOf(st.startTime) > maxTime && Integer.valueOf(st.endTime) > maxTime)) {
// if (Integer.valueOf(st.startTime) >= minTime && Integer.valueOf(st.startTime)
// < maxTime) {
if (Integer.valueOf(st.endTime) > maxTime) {
st.endTime = Integer.valueOf(maxTime).toString();
st.length = Integer.valueOf(Integer.valueOf(maxTime) - Integer.valueOf(st.startTime)).toString();
}
if (Integer.valueOf(st.startTime) < minTime) {
st.startTime = Integer.valueOf(minTime).toString();
st.length = Integer.valueOf(Integer.valueOf(st.endTime) - Integer.valueOf(minTime)).toString();
if (Integer.valueOf(st.startTime) < minTime && Integer.valueOf(st.endTime) > maxTime) {
st.startTime = Integer.valueOf(minTime).toString();
st.endTime = Integer.valueOf(maxTime).toString();
st.length = Integer.valueOf(Integer.valueOf(maxTime) - Integer.valueOf(minTime)).toString();
}
String taskname = "";
for (vertex tasknameCheck : g.vertexSet()) {
String[] taskToAdd = tasknameCheck.toString().split("__");
int taskToAddindex = taskToAdd.length;
String taskToAddid = taskToAdd[taskToAddindex - 1];
if (isNumeric(taskToAddid)) {
if (Integer.valueOf(taskToAddid).equals(Integer.valueOf(st.id))) {
taskname = tasknameCheck.toString();
break;
}
}
}
String[] name = st.deviceName.split("_");
String deviceName = name[0];
// there is a path between task 1 and task 2
if (path2 != null && path2.getLength() > 0) {
if (!taskname.equals(null) && !taskname.equals("")) {
GraphPath<vertex, DefaultEdge> pathToOrigin = DijkstraShortestPath.findPathBetween(g, getvertex(task12), getvertex(taskname));
GraphPath<vertex, DefaultEdge> pathToDestination = DijkstraShortestPath.findPathBetween(g, getvertex(taskname),
getvertex(task22));
if (taskname.equals(task12) || taskname.equals(task22) || (pathToOrigin != null && pathToOrigin.getLength() > 0
&& pathToDestination != null && pathToDestination.getLength() > 0)) {
relatedsimTraces.add(st);
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
ArrayList<Integer> timeValues = new ArrayList<Integer>();
timeValues.add(0, Integer.valueOf(st.runnableTime));
timeValues.add(1, Integer.valueOf(st.startTime));
if (!(st.runnableTime).equals(st.startTime)) {
if (runnableTimePerDevice.containsKey(st.deviceName)) {
if (!runnableTimePerDevice.get(st.deviceName).contains(timeValues)) {
runnableTimePerDevice.get(st.deviceName).add(timeValues);
}
} else {
ArrayList<ArrayList<Integer>> timeValuesList = new ArrayList<ArrayList<Integer>>();
timeValuesList.add(timeValues);
runnableTimePerDevice.put(st.deviceName, timeValuesList);
}
}
}
else if (((st.deviceName.equals(task2DeviceName)) || st.deviceName.equals(task1DeviceName)
|| devicesToBeConsidered.contains(deviceName)) && !st.id.equals(idTask1) && !st.id.equals(idTask2)) {
delayDueTosimTraces.add(st);
}
}
timeDelayedPerRow.put(row, runnableTimePerDevice);
} else {
if (!taskname.equals(null) && !taskname.equals("")) {
GraphPath<vertex, DefaultEdge> pathExistsTestwithTask1 = DijkstraShortestPath.findPathBetween(g, getvertex(task12),
getvertex(taskname));
GraphPath<vertex, DefaultEdge> pathExistsTestwithTask2 = DijkstraShortestPath.findPathBetween(g, getvertex(taskname),
getvertex(task22));
if (pathExistsTestwithTask1 != null && pathExistsTestwithTask1.getLength() > 0
|| pathExistsTestwithTask2 != null && pathExistsTestwithTask2.getLength() > 0) {
relatedsimTraces.add(st);
} else if (((st.deviceName.equals(task2DeviceName)) || st.deviceName.equals(task1DeviceName)
|| devicesToBeConsidered.contains(deviceName)) && !st.id.equals(idTask1) && !st.id.equals(idTask2)) {
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
delayDueTosimTraces.add(st);
}
}
}
}
}
}
// fill the tasks that run on the same hardware but don't belong to the path
// between selected activities
public Object[][] getTaskHWByRowDetails(int row) {
Object[][] dataByTaskRowDetails = new Object[dataBydelayedTasks.get(row).size()][6];
int i = 0;
for (SimulationTransaction st : dataBydelayedTasks.get(row)) {
dataByTaskRowDetails[i][0] = st.command;
dataByTaskRowDetails[i][1] = nameIDTaskList.get(st.id);
dataByTaskRowDetails[i][2] = st.deviceName;
dataByTaskRowDetails[i][3] = Integer.valueOf(st.startTime);
dataByTaskRowDetails[i][4] = Integer.valueOf(st.endTime);
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
i++;
/*
* HashMap<String, ArrayList<ArrayList<Integer>>> delayTime =
* timeDelayedPerRow.get(row);
*
* boolean causeDelay = false;
*
* if (delayTime.containsKey(st.deviceName)) {
*
* for (Entry<String, ArrayList<ArrayList<Integer>>> entry :
* delayTime.entrySet()) { if (entry.getKey().equals(st.deviceName)) {
* ArrayList<ArrayList<Integer>> timeList = entry.getValue();
*
* for (int j = 0; j < timeList.size(); j++) {
*
* if (Integer.valueOf(st.startTime) > timeList.get(j).get(0) &&
* Integer.valueOf(st.startTime) < timeList.get(j).get(1)) {
*
* causeDelay = true;
*
* } }
*
* }
*
* }
*
* }
*
* dataByTaskRowDetails[i][5] = causeDelay;
*
*
*/
}
return dataByTaskRowDetails;
}
// fill the Min max delay table on main latency analysis frame
public Object[][] latencyMinMaxAnalysis(String task12ID, String task22ID, Vector<SimulationTransaction> transFile1) {
List<Integer> times1MinMAx = new ArrayList<Integer>();
List<Integer> times2MinMAx = new ArrayList<Integer>();
String[] task1 = task12ID.split("__");
String[] task2 = task22ID.split("__");
String task12 = nameIDTaskList.get(idTask1);
String task22 = nameIDTaskList.get(idTask2);
times1MinMAx = times1;
times2MinMAx = times2;
HashMap<Integer, ArrayList<Integer>> minTimes = new HashMap<Integer, ArrayList<Integer>>();
for (int time1 : times1MinMAx) {
int match = Integer.MAX_VALUE;
// Find the first subsequent transaction
int time = Integer.MAX_VALUE;
for (int time2 : times2MinMAx) {
int diff = time2 - time1;
if (diff < time && diff >= 0) {
time = diff;
match = time2;
}
try {
if (times2MinMAx.contains(match)) {
times2MinMAx.remove(Integer.valueOf(match));
}
} catch (Exception e) {
}
if (time != Integer.MAX_VALUE) {
ArrayList<Integer> startEndT = new ArrayList<Integer>();
startEndT.add(time1);
startEndT.add(match);
minTimes.put(time, startEndT);
}
}
dataByTaskMinMax = new Object[2][5];
if (minTimes.size() > 0) {
Integer min = Collections.min(minTimes.keySet());
Integer max = Collections.max(minTimes.keySet());
dataByTaskMinMax = new Object[2][5];
ArrayList<Integer> numMax = minTimes.get(max);
ArrayList<Integer> numMin = minTimes.get(min);
dataByTaskMinMax[0][0] = task12;
dataByTaskMinMax[0][1] = numMin.get(0);
dataByTaskMinMax[0][2] = task22;
dataByTaskMinMax[0][3] = numMin.get(1);
dataByTaskMinMax[0][4] = min;
dataByTaskMinMax[1][0] = task12;
dataByTaskMinMax[1][1] = numMax.get(0);
dataByTaskMinMax[1][2] = task22;
dataByTaskMinMax[1][3] = numMax.get(1);
dataByTaskMinMax[1][4] = max;
// fill the Min max delay table on main latency analysis frame for tainted data
public Object[][] latencyMinMaxAnalysisTaintedData(String task12ID, String task22ID, Vector<SimulationTransaction> transFile1) {
List<Integer> times1MinMAx = new ArrayList<Integer>();
List<Integer> times2MinMAx = new ArrayList<Integer>();
String[] task1 = task12ID.split("__");
int task1index = task1.length;
idTask1 = task1[task1index - 1];
String[] task2 = task22ID.split("__");
int task2index = task2.length;
idTask2 = task2[task2index - 1];
String task12 = nameIDTaskList.get(idTask1);
String task22 = nameIDTaskList.get(idTask2);
times1MinMAx = times1;
times2MinMAx = times2;
HashMap<Integer, ArrayList<Integer>> minTimes = new HashMap<Integer, ArrayList<Integer>>();
for (int time1 : times1MinMAx) {
int match = Integer.MAX_VALUE;
// Find the first subsequent transaction
int time = Integer.MAX_VALUE;
if (times2MinMAx.get(index) > 0) {
int time2 = times2MinMAx.get(index);
int diff = time2 - time1;
if (diff < time && diff >= 0) {
time = diff;
match = time2;
}
if (time != Integer.MAX_VALUE) {
ArrayList<Integer> startEndT = new ArrayList<Integer>();
startEndT.add(time1);
startEndT.add(match);
minTimes.put(time, startEndT);
}
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
}
dataByTaskMinMax = new Object[2][5];
if (minTimes.size() > 0) {
Integer min = Collections.min(minTimes.keySet());
Integer max = Collections.max(minTimes.keySet());
dataByTaskMinMax = new Object[2][5];
ArrayList<Integer> numMax = minTimes.get(max);
ArrayList<Integer> numMin = minTimes.get(min);
dataByTaskMinMax[0][0] = task12;
dataByTaskMinMax[0][1] = numMin.get(0);
dataByTaskMinMax[0][2] = task22;
dataByTaskMinMax[0][3] = numMin.get(1);
dataByTaskMinMax[0][4] = min;
dataByTaskMinMax[1][0] = task12;
dataByTaskMinMax[1][1] = numMax.get(0);
dataByTaskMinMax[1][2] = task22;
dataByTaskMinMax[1][3] = numMax.get(1);
dataByTaskMinMax[1][4] = max;
}
return dataByTaskMinMax;
}
// fill the detailed latency table once a row is selected from min/max table
public Object[][] getTasksByRowMinMax(int row) {
Object[][] dataByTaskRowDetails = new Object[relatedsimTraces.size()][5];
int i = 0;
for (SimulationTransaction st : relatedsimTraces) {
dataByTaskRowDetails[i][0] = st.command;
dataByTaskRowDetails[i][1] = nameIDTaskList.get(st.id);
dataByTaskRowDetails[i][2] = st.deviceName;
dataByTaskRowDetails[i][3] = Integer.valueOf(st.startTime);
dataByTaskRowDetails[i][4] = Integer.valueOf(st.endTime);
i++;
}
return dataByTaskRowDetails;
}
// fill the tasks that run on the same hardware but don't belong to the path
// between selected activities
public Object[][] getTaskHWByRowDetailsMinMax(int row) {
Object[][] dataByTaskRowDetails = new Object[delayDueTosimTraces.size()][5];
int i = 0;
for (SimulationTransaction st : delayDueTosimTraces) {
dataByTaskRowDetails[i][0] = st.command;
dataByTaskRowDetails[i][1] = nameIDTaskList.get(st.id);
dataByTaskRowDetails[i][2] = st.deviceName;
dataByTaskRowDetails[i][3] = Integer.valueOf(st.startTime);
dataByTaskRowDetails[i][4] = Integer.valueOf(st.endTime);
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
i++;
}
return dataByTaskRowDetails;
}
// import graph in .graphml format
public void importGraph(String filename) throws ExportException, IOException, ImportException {
FileReader ps = new FileReader(filename + ".graphml");
// gmlExporter.exportGraph(g, PS);
// FileWriter PS2 = new FileWriter(filename + "test.graphml");
VertexProvider<String> vertexProvider = (id, attributes) -> {
String cv = new String(id);
return cv;
};
EdgeProvider<String, DefaultEdge> edgeProvider = (from, to, label, attributes) -> new DefaultEdge();
GraphMLImporter<String, DefaultEdge> importer = new GraphMLImporter<String, DefaultEdge>(vertexProvider, edgeProvider);
Graph<String, DefaultEdge> importedGraph = null;
importer.importGraph(importedGraph, ps);
}
public List<TMLComponentDesignPanel> getCpanels() {
return cpanels;
}
public void setCpanels(List<TMLComponentDesignPanel> cpanels) {
this.cpanels = cpanels;
}
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
public HashMap<String, String> getNameIDTaskList() {
return nameIDTaskList;
}
public JScrollPane getScrollPane() {
return scrollPane;
}
public static void setScrollPane(JScrollPane scrollPane) {
DirectedGraphTranslator.scrollPane = scrollPane;
}
public String checkPath(String task12ID, String task22ID) {
Boolean isPath = false;
String result = "";
String[] task1 = task12ID.split("__");
int task1index = task1.length;
idTask1 = task1[task1index - 1];
String[] task2 = task22ID.split("__");
int task2index = task2.length;
idTask2 = task2[task2index - 1];
String task12 = nameIDTaskList.get(idTask1);
String task22 = nameIDTaskList.get(idTask2);
vertex v1 = getvertex(task12);
vertex v2 = getvertex(task22);
GraphPath<vertex, DefaultEdge> pathToOrigin = DijkstraShortestPath.findPathBetween(g, v1, v2);
if (pathToOrigin != null && pathToOrigin.getLength() > 0) {
isPath = true;
}
if (isPath) {
result = "A path exists between operators";
} else {
result = "No path between operators";
}
return result;
}
public Vector<String> getreadChannelNodes() {
return readChannelTransactions;
}
public Vector<String> getwriteChannelNodes() {
return writeChannelTransactions;
}
public String addRule(String node1, String node2, Vector<String> writeChannelTransactions, String ruleDirection) {
vertex v1 = getvertex(node1);
vertex v2 = getvertex(node2);
vertex v1Channel = null, v2Channel = null;
String message = "";
if (v2Channel == null && Graphs.vertexHasSuccessors(g, v2)) {
for (vertex n : Graphs.successorListOf(g, v2)) {
if (n.getType() == vertex.TYPE_CHANNEL) {
v2Channel = n;
break;
}
}
}
Boolean hasWriteVertex = false;
if (Graphs.vertexHasPredecessors(g, v1)) {
for (vertex n : Graphs.predecessorListOf(g, v1)) {
if (n.getType() == vertex.TYPE_CHANNEL) {
if (Graphs.vertexHasPredecessors(g, n)) {
for (vertex writenode : Graphs.predecessorListOf(g, n)) {
if (writeChannelTransactions.contains(writenode.getName())) {
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
hasWriteVertex = true;
break;
}
}
}
if (hasWriteVertex) {
v1Channel = n;
break;
} else {
v1Channel = v1;
}
}
}
}
if (v1Channel != null && v2Channel != null) {
if (ruleDirection.equals("After")) {
if (ruleAddedEdges.containsKey(v2Channel)) {
ruleAddedEdges.get(v2Channel).add(v1Channel);
message = "Rule between " + v1Channel + " and " + v2Channel + " was added";
} else {
List<vertex> sendVertex = new ArrayList<vertex>();
sendVertex.add(v1Channel);
ruleAddedEdges.put(v2Channel, sendVertex);
message = "Rule between " + v1Channel + " and " + v2Channel + " was added";
}
if (ruleAddedEdgesChannels.containsKey(v2)) {
ruleAddedEdgesChannels.get(v2).add(v1);
} else {
List<vertex> sendVertex = new ArrayList<vertex>();
sendVertex.add(v1);
ruleAddedEdgesChannels.put(v2, sendVertex);
}
}
}
if (message.isEmpty())
{
message = "Couln't add rule between " + v1 + " and " + v2 + "";
}
// TODO Auto-generated method stub
return message;
}
public Boolean edgeExists(int vID1, int vID2) {
vertex v1 = getvertexFromID(vID1);
vertex v2 = getvertexFromID(vID2);
if (g.containsEdge(v1, v2)) {
return true;
}
return false;
}
public HashMap<vertex, List<vertex>> getRuleAddedEdges() {
return ruleAddedEdges;
}
public void setRuleAddedEdges(HashMap<vertex, List<vertex>> ruleAddedEdges) {
this.ruleAddedEdges = ruleAddedEdges;
}
public void setRuleAddedEdgesChannels(HashMap<vertex, List<vertex>> ruleAddedEdgesChannels) {
this.ruleAddedEdgesChannels = ruleAddedEdgesChannels;
}
public HashMap<vertex, List<vertex>> getRuleAddedEdgesChannels() {
return ruleAddedEdgesChannels;
}
public Graph<vertex, DefaultEdge> getG() {
return g;
}
public void setG(Graph<vertex, DefaultEdge> g) {
this.g = g;
}
public List<String> getWarnings() {
return warnings;
}