Newer
Older
/**Copyright or (C) or Copr. GET / ENST, Telecom-Paris, Ludovic Apvrille
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
ludovic.apvrille AT enst.fr
This software is a computer program whose purpose is to allow the
edition of TURTLE analysis, design and deployment diagrams, to
allow the generation of RT-LOTOS or Java code from this diagram,
and at last to allow the analysis of formal validation traces
obtained from external tools, e.g. RTL from LAAS-CNRS and CADP
from INRIA Rhone-Alpes.
This software is governed by the CeCILL license under French law and
abiding by the rules of distribution of free software. You can use,
modify and/ or redistribute the software under the terms of the CeCILL
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".
As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software's author, the holder of the
economic rights, and the successive licensors have only limited
liability.
In this respect, the user's attention is drawn to the risks associated
with loading, using, modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.
The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.
/**
* Class AUTGraph
* Creation : 16/09/2004
** @version 1.0 16/09/2004
* @author Ludovic APVRILLE
* @see
*/
package ui.graph;
import java.util.*;
import java.io.*;
import myutil.*;
protected ArrayList<AUTState> states;
protected int nbState;
protected BufferedReader br;
protected long nbTransition;
protected int percentage;
protected boolean[] hasExitTransition;
protected boolean[] hasEntryTransition;
protected boolean statesComputed;
"node {" +
" fill-color: blue;" +
"} " +
// "edge.defaultedge {" +
// " shape: cubic-curve;" +
// "}" +
// "edge {shape: cubic-curve}" +
"edge.external {" +
" text-style: bold;" +
"} " +
"node.deadlock {" +
" fill-color: green;" +
"} " +
"node.init {" +
" fill-color: red;" +
"} ";
public AUTGraph() {
transitions = new ArrayList<AUTTransition>();
//buildGraph(dataAUT);
}
public void buildGraph(String data) {
if (data == null) {
return;
}
StringReader sr = new StringReader(data);
br = new BufferedReader(sr);
String s, s1, s2;
int index1;
//int origin, destination;
AUTTransition at;
/* read header */
//System.out.println("Building graph");
try {
while((s = br.readLine()) != null) {
index1 = s.indexOf("des");
//System.out.println("Searching for des");
if (index1 == 0) {
//System.out.println("des found");
s1 = s.substring(s.indexOf(',') + 1, s.length());
s1 = s1.substring(0, s1.indexOf(','));
s1 = Conversion.removeFirstSpaces(s1);
nbTransition = new Integer(s1).intValue();
s2 = s.substring(s.indexOf(",") + 1, s.indexOf(')'));
s2 = s2.substring(s2.indexOf(",") + 1, s2.length());
s2 = Conversion.removeFirstSpaces(s2);
nbState = new Integer(s2).intValue();
break;
}
}
} catch (Exception e) {
TraceManager.addDev("Exception when reading graph information: " + e.getMessage() + "\n");
return;
String[] array;
hasExitTransition = new boolean[nbState];
hasEntryTransition = new boolean[nbState];
TraceManager.addDev("NbState=" + nbState + " NbTransition=" + nbTransition + "\n");
/*for(cpt=0; cpt<nbState; cpt ++) {
hasExitTransition[cpt] = false;
hasEntryTransition[cpt] = false;
}*/
cpt = 0;
mod = Math.max(1, (int)(nbTransition / 100));
while((s = br.readLine()) != null) {
//System.out.println("realine:" + s);
array = AUTGraph.decodeLine(s);
at = new AUTTransition(array[0], array[1], array[2]);
transitions.add(at);
hasExitTransition[at.origin] = true;
hasEntryTransition[at.destination] = true;
cpt ++;
if ((cpt % mod) == 0) {
percentage = (int)((cpt *100) / nbTransition);
//System.out.println("percentage=" + percentage + "cpt=" + cpt + "nbTransition=" + nbTransition);
}
}
} catch (Exception e) {
TraceManager.addDev("Cancelled: " + e.getMessage() + "\n");
return;
public static String[] decodeLine(String s) {
int index1, index2;
String s1, s2, s3;
index2 = s.indexOf(",");
s1 = s.substring(index1+1, index2);
s = s.substring(index2 +1, s.length());
s = Conversion.removeFirstSpaces(s);
// for of the action
// , action,
// "i(action<1,2,4>)",
// "action<1,2,4>",
// guillemets ?
index1 = s.indexOf("\"");
if (index1 > -1) {
//System.out.println("Guillemets on " + s);
s2 = s.substring(index1+1, s.length());
s2 = s2.substring(0, s2.indexOf("\""));
//System.out.println("Guillemets on " + s2);
if (index2 > -1) {
s2 = s2.substring(index2+1, s2.indexOf(")"));
}*/
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
//System.out.println("Guillemets on " + s2);
} else {
//System.out.println("No Guillemets on " + s);
index1 = s.indexOf(",");
if ((index2 = s.indexOf("(")) >= 0) {
s2 = s.substring(index2+1, index1-2);
} else {
if ((index2 = s.indexOf("\"t\"")) >= 0) {
s2 = "t";
} else {
s2 = s.substring(0, index1);
}
}
}
s = s.substring(s.indexOf(s2) + s2.length(), s.length());
//System.out.println("s=" + s);
index1 = s.indexOf(",");
//index2 = s.indexOf(")");
//s2 = s.substring(0, index1-1);
s3 = s.substring(index1+1, s.length()-1);
s3 = Conversion.removeFirstSpaces(s3);
//System.out.println("s1=" + s1 + " s2=" + s2 + " s3=" + s3);
String []array = new String[3];
array[0] = s1;
array[1] = s2;
array[2] = s3;
return array;
//return nbTransition;
return transitions.size();
}
public AUTTransition getAUTTransition(int index) {
return transitions.get(index);
}
}
public ArrayList<AUTTransition> getTransitions() {
transitions.add(_tr);
statesComputed = false;
public int getNbPotentialDeadlocks(){
int nb = 0;
for(int i=0; i<nbState; i++) {
if (hasEntryTransition(i)) {
if (!hasExitTransition(i)) {
nb ++;
}
}
}
public String getActionTransition(int origin, int destination) {
for(AUTTransition aut1 : transitions) {
if ((aut1.origin == origin) && (aut1.destination == destination)){
return aut1.transition;
}
}
return "";
}
public boolean hasEntryTransition(int state) {
return hasEntryTransition[state];
public boolean hasExitTransition(int state) {
return hasExitTransition[state];
public boolean hasExitTransitionTo(int state, int destination) {
if (!hasExitTransition(state)) {
return false;
}
for(AUTTransition aut1 : transitions) {
if ((aut1.origin == state) && (aut1.destination == destination)){
return true;
}
}
return false;
/* State numbers are return under the form of int */
/* Should be rewritten: not of high performance at all */
public int[] getVectorPotentialDeadlocks() {
int nbPotentialDeadlock = getNbPotentialDeadlocks();
//System.out.println("nb of deadlocks: " + nbPotentialDeadlock);
int[] states = new int[nbPotentialDeadlock];
int index = 0;
for(int i=0; i<nbState; i++) {
if (hasEntryTransition(i)) {
if (!hasExitTransition(i)) {
states[index] = i;
index ++;
}
}
}
public int [] shortestPathTo(int fromState, int targetState) {
return GraphAlgorithms.ShortestPathFrom(this, fromState)[targetState].path;
}
public boolean hasTransitionWithAction(String action) {
for(AUTTransition aut1 : transitions) {
if (aut1.transition.compareTo(action) == 0){
return true;
}
}
return false;
}
public int getWeightOfTransition(int originState, int destinationState) {
if (statesComputed) {
if (states.get(originState).hasTransitionTo(destinationState)) {
return 1;
}
} else {
if (hasExitTransitionTo(originState, destinationState)) {
return 1;
}
}
public String toAUTStringFormat() {
StringBuffer graph = new StringBuffer("");
graph.append("des(0," + nbTransition + "," + nbState + ")\n");
for(AUTTransition aut1 : transitions) {
graph.append("(" + aut1.origin + ",\"" + aut1.transition + "\"," + aut1.destination + ")\n");
}
return graph.toString();
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
}
public void computeStates() {
if (!statesComputed) {
states = new ArrayList<AUTState>(nbState);
AUTState state;
for(int i=0; i<nbState; i++) {
state = new AUTState(i);
states.add(state);
}
for(AUTTransition aut1 : transitions) {
states.get(aut1.origin).addOutTransition(aut1);
states.get(aut1.destination).addInTransition(aut1);
}
statesComputed = true;
}
}
public AUTState getState(int _id) {
return states.get(_id);
}
public boolean areStateComputed() {
return statesComputed;
}
public HashSet<String> getAllActions() {
HashSet<String> hs = new HashSet<String>();
for(AUTTransition tr: transitions) {
hs.add(tr.transition);
}
return hs;
}
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
public void reinitMet() {
for(AUTState state: states) {
state.met = false;
}
}
public AUTState findFirstOriginState() {
AUTState state;
for(int i=0; i<states.size(); i++) {
state = states.get(i);
//System.out.println("id=" + state.id + " transitions to me = " +state.inTransitions.size());
if (state.inTransitions.size() == 0) {
return state;
}
}
return null;
}
public void putTransitionsFromInitFirst() {
ArrayList<AUTTransition> tmp = new ArrayList<AUTTransition>();
for(AUTTransition aut1 : transitions) {
if (aut1.origin == 0) {
tmp.add(aut1);
}
}
for(AUTTransition aut2 : tmp) {
transitions.remove(aut2);
transitions.add(0, aut2);
}
}
AUTGraphDisplay display = new AUTGraphDisplay(this);
display.display();
AUTGraph newGraph = new AUTGraph();
newGraph.setNbOfStates(getNbOfStates());
for(AUTTransition tr: transitions) {
AUTTransition newTr = new AUTTransition(tr.origin, tr.transition, tr.destination);
newGraph.addTransition(newTr);
}
newGraph.computeStates();
return newGraph;
public void minimizeRemoveInternal() {
String s = "tau";
// mark all transitions as non tau
for(AUTTransition tr: transitions) {
tr.isTau = false;
}
// Mark all tau transitions as tau
for(AUTTransition tr: transitions) {
if (tr.transition.startsWith("i(")) {
tr.isTau = true;
tr.transition = s;
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
}
minimizeTau();
}
public void minimize(String [] tauTransitions) {
String s = "tau";
// mark all transitions as non tau
for(AUTTransition tr: transitions) {
tr.isTau = false;
}
// Mark all tau transitions as tau
for(AUTTransition tr: transitions) {
for (int i=0; i<tauTransitions.length; i++) {
if (tr.transition.compareTo(tauTransitions[i]) == 0) {
tr.isTau = true;
tr.transition = s;
}
}
}
minimizeTau();
public void minimizeTau() {
boolean modif = true;
while(modif) {
modif = removeTauTr();
}
}
// Remove transition going from one state with only one tau transition as output
AUTTransition tr;
ArrayList<AUTState> toRemoveStates = new ArrayList<AUTState>();
// Remove in case state with one outgoing and outgoing is tau -> remove tr
for(AUTState st: states) {
if (st.outTransitions.size() == 1) {
tr = st.outTransitions.get(0);
if (tr.isTau) {
transitions.remove(tr);
AUTState st1 = states.get(tr.destination);
if (st1 != st) {
toRemoveStates.add(st1);
TraceManager.addDev("Removing state " + st1.id);
// Must put all incoming transition to the first state
st1.inTransitions.remove(tr);
for(AUTTransition trM: st1.inTransitions) {
trM.destination = st.id;
st.inTransitions.add(trM);
TraceManager.addDev("New in transitions " + trM);
st1.inTransitions.clear();
// Out transitions
st.outTransitions.clear();
for(AUTTransition trM: st1.outTransitions) {
st.outTransitions.add(trM);
trM.origin = st.id;
TraceManager.addDev("New out transitions " + trM);
}
st1.outTransitions.clear();
// Remove all states and adapt the id in the graph
for(AUTState str: toRemoveStates) {
TraceManager.addDev("Removing really state " + str.id);
// Last state of the array?
if (str.id == (nbState - 1)) {
TraceManager.addDev("Last state " + str.id);
nbState --;
states.remove(str.id);
// str not at the end: we replace it with the last state
// We need to accordingly update
} else {
AUTState moved = states.get(nbState-1);
TraceManager.addDev("Moving state " + moved.id + " to index " + str.id);
states.set(str.id, moved);
states.remove(nbState-1);
nbState --;
AUTTransition tt = findTransitionWithId(nbState);
if (tt != null) {
TraceManager.addDev("1) Transition with id not normal" + tt);
}
moved.updateID(str.id);
tt = findTransitionWithId(nbState);
if (tt != null) {
TraceManager.addDev("2) Transition with id not normal" + tt);
}
}
return true;
}
return false;
private AUTTransition findTransitionWithId(int id) {
for (AUTTransition tr: transitions) {
if ((tr.origin == id) || (tr.destination == id)) {
return tr;
}
}
return null;
}