Newer
Older
/* Copyright or (C) or Copr. GET / ENST, Telecom-Paris, Ludovic Apvrille
* ludovic.apvrille AT enst.fr
* This software is a computer program whose purpose is to allow the
* edition of TURTLE analysis, design and deployment diagrams, to
* allow the generation of RT-LOTOS or Java code from this diagram,
* and at last to allow the analysis of formal validation traces
* obtained from external tools, e.g. RTL from LAAS-CNRS and CADP
* from INRIA Rhone-Alpes.
* This software is governed by the CeCILL license under French law and
* abiding by the rules of distribution of free software. You can use,
* modify and/ or redistribute the software under the terms of the CeCILL
* license as circulated by CEA, CNRS and INRIA at the following URL
* "http://www.cecill.info".
* As a counterpart to the access to the source code and rights to copy,
* modify and redistribute granted by the license, users are provided only
* with a limited warranty and the software's author, the holder of the
* economic rights, and the successive licensors have only limited
* liability.
* In this respect, the user's attention is drawn to the risks associated
* with loading, using, modifying and/or developing or reproducing the
* software by the user in light of its specific status of free software,
* that may mean that it is complicated to manipulate, and that also
* therefore means that it is reserved for developers and experienced
* professionals having in-depth computer knowledge. Users are therefore
* encouraged to load and test the software's suitability as regards their
* requirements in conditions enabling the security of their systems and/or
* data to be ensured and, more generally, to use and operate it in the
* same conditions as regards security.
* The fact that you are presently reading this means that you have had
* knowledge of the CeCILL license and that you accept its terms.
*/
import com.mxgraph.layout.hierarchical.mxHierarchicalLayout;
import com.mxgraph.swing.mxGraphComponent;
import org.jgrapht.Graph;
import org.jgrapht.GraphPath;
import org.jgrapht.alg.shortestpath.AllDirectedPaths;
import org.jgrapht.alg.shortestpath.DijkstraShortestPath;
import org.jgrapht.ext.JGraphXAdapter;
import org.jgrapht.graph.DefaultDirectedGraph;
import org.jgrapht.graph.DefaultEdge;
import org.jgrapht.io.*;
import tmltranslator.*;
import tmltranslator.tomappingsystemc2.DiploSimulatorCodeGenerator;
import ui.TGComponent;
import ui.TGConnectingPoint;
import ui.TGConnector;
import ui.TMLComponentDesignPanel;
import ui.interactivesimulation.SimulationTransaction;
import ui.tmlcompd.TMLCPrimitivePort;
import javax.imageio.ImageIO;
import javax.swing.*;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.*;
import java.util.*;
import java.util.List;
import java.util.Map.Entry;
/**
* Class DirectedGraphTranslator: this class generate the directed graph
* equivalent for the sysml model
* 23/09/2019
*
* @author Maysam Zoor
*/
public class DirectedGraphTranslator extends JApplet {
// private TMLArchiPanel tmlap; // USed to retrieve the currently opened
// architecture panel
// private TMLMapping<TGComponent> tmap;
private TMLActivity activity;
private int nodeNbProgressBar = 0;
private int nodeNb = 0;
// List<HwNode> path;
private TMLActivityElement currentElement;
private TMLActivityElement backwardElement;
private ArrayList<String> SummaryCommMapping;
private Graph<vertex, DefaultEdge> g;
private static final Dimension DEFAULT_SIZE = new Dimension(530, 320);
private final List<HwLink> links;
private final TMLMapping<TGComponent> tmap;
private final HashMap<String, String> addedEdges = new HashMap<String, String>();
private final HashMap<String, HashSet<String>> sendEventWaitEventEdges = new HashMap<String, HashSet<String>>();
private final HashMap<String, HashSet<String>> readWriteChannelEdges = new HashMap<String, HashSet<String>>();
private final HashMap<String, HashSet<String>> writeReadChannelEdges = new HashMap<String, HashSet<String>>();
private final HashMap<String, HashSet<String>> forkreadEdges = new HashMap<String, HashSet<String>>();
private final HashMap<String, HashSet<String>> forkwriteEdges = new HashMap<String, HashSet<String>>();
private final HashMap<String, HashSet<String>> joinreadEdges = new HashMap<String, HashSet<String>>();
private final HashMap<String, HashSet<String>> joinwriteEdges = new HashMap<String, HashSet<String>>();
private final HashMap<String, HashSet<String>> sequenceEdges = new HashMap<String, HashSet<String>>();
private final HashMap<String, ArrayList<String>> orderedSequenceList = new HashMap<String, ArrayList<String>>();
private final HashMap<String, HashSet<String>> unOrderedSequenceEdges = new HashMap<String, HashSet<String>>();
private final HashMap<String, ArrayList<String>> unOrderedSequenceList = new HashMap<String, ArrayList<String>>();
private final List<String> forEverLoopList = new ArrayList<String>();
private final HashMap<String, List<TMLTask>> requests = new HashMap<String, List<TMLTask>>();
private final HashMap<String, HashSet<String>> requestEdges = new HashMap<String, HashSet<String>>();
private final HashMap<String, List<String>> requestsOriginDestination = new HashMap<String, List<String>>();
private final HashMap<String, List<String>> requestsPorts = new HashMap<String, List<String>>();
private final HashMap<String, List<String>> requestsDestination = new HashMap<String, List<String>>();
private final Vector<String> allLatencyTasks = new Vector<String>();
private static JScrollPane scrollPane = new JScrollPane();
// List<String,String> = new ArrayList<String,String>();
private final HashMap<String, String> nameIDTaskList = new HashMap<String, String>();
private final HashMap<String, ArrayList<String>> channelPaths = new HashMap<String, ArrayList<String>>();
private Object[][] dataByTask = null;
private Object[][] dataByTaskMinMax = null;
private Object[][] dataByTaskBYRow;
private Object[][] dataByTaskHWBYRow;
private HashMap<Integer, Vector<SimulationTransaction>> dataByTaskR = new HashMap<Integer, Vector<SimulationTransaction>>();
private HashMap<Integer, List<SimulationTransaction>> dataBydelayedTasks = new HashMap<Integer, List<SimulationTransaction>>();
private HashMap<Integer, HashMap<String, ArrayList<ArrayList<Integer>>>> timeDelayedPerRow = new HashMap<Integer, HashMap<String, ArrayList<ArrayList<Integer>>>>();
private HashMap<Integer, List<String>> detailsOfMinMaxRow = new HashMap<Integer, List<String>>();
private HashMap<Integer, List<SimulationTransaction>> dataBydelayedTasksOfMinMAx = new HashMap<Integer, List<SimulationTransaction>>();
private final JFrame frame = new JFrame("The Sys-ML Model As Directed Graph");
private List<Integer> times1 = new ArrayList<Integer>();
private List<Integer> times2 = new ArrayList<Integer>();
private Vector<SimulationTransaction> transFile;
private String idTask1;
private String idTask2;
private String task2DeviceName = "";
private String task1DeviceName = "";
private ArrayList<String> devicesToBeConsidered = new ArrayList<String>();
private Vector<SimulationTransaction> relatedsimTraces = new Vector<SimulationTransaction>();
private Vector<SimulationTransaction> delayDueTosimTraces = new Vector<SimulationTransaction>();
private HashMap<String, ArrayList<SimulationTransaction>> relatedsimTraceswithTaint = new HashMap<String, ArrayList<SimulationTransaction>>();
private JFrameLatencyDetailedAnalysis frameLatencyDetailedAnalysis;
private JFrameCompareLatencyDetail frameCompareLatencyDetail;
private int callingFrame;
private int nbOfNodes = 0;
private List<String> usedLabels = new ArrayList<String>();
private List<String> warnings = new ArrayList<String>();
private static Random random = new Random();
private static final String CHAR_LOWER = "abcdefghijklmnopqrstuvwxyz";
private static final String CHAR_UPPER = CHAR_LOWER.toUpperCase();
private static final String data = CHAR_LOWER + CHAR_UPPER;
// List<vertex> gVertecies = new ArrayList<vertex>();
private HashMap<String, ArrayList<ArrayList<Integer>>> runnableTimePerDevice = new HashMap<String, ArrayList<ArrayList<Integer>>>();
private HashMap<String, List<String>> allForLoopNextValues = new HashMap<String, List<String>>();
private HashMap<vertex, List<vertex>> allChoiceValues = new HashMap<vertex, List<vertex>>();
private HashMap<vertex, List<vertex>> allSeqValues = new HashMap<vertex, List<vertex>>();
private HashMap<vertex, List<vertex>> allRandomSeqValues = new HashMap<vertex, List<vertex>>();
private String taintLabel = "";
private Vector<String> readChannelTransactions = new Vector<String>();
private Vector<String> writeChannelTransactions = new Vector<String>();
private HashMap<vertex, List<vertex>> ruleAddedEdges = new HashMap<vertex, List<vertex>>();
private HashMap<vertex, List<vertex>> ruleAddedEdgesChannels = new HashMap<vertex, List<vertex>>();
private HashMap<String, Integer> cpuIDs = new HashMap<String, Integer>();
private HashMap<String, List<String>> forLoopNextValues = new HashMap<String, List<String>>();
private int opCount;
private HashMap<String, List<String>> sendEvt = new HashMap<String, List<String>>();
private HashMap<String, List<String>> waitEvt = new HashMap<String, List<String>>();
private HashMap<String, String> sendData = new HashMap<String, String>();
private HashMap<String, String> receiveData = new HashMap<String, String>();
private String taskStartName = "";
@SuppressWarnings("deprecation")
public DirectedGraphTranslator(JFrameLatencyDetailedAnalysis jFrameLatencyDetailedAnalysis, JFrameCompareLatencyDetail jframeCompareLatencyDetail,
TMLMapping<TGComponent> tmap1, List<TMLComponentDesignPanel> cpanels1, int i) {
links = tmap.getTMLArchitecture().getHwLinks();
// tmlcdp = getCpanels().get(0);
callingFrame = i;
if (callingFrame == 0)
{
frameLatencyDetailedAnalysis = jFrameLatencyDetailedAnalysis;
} else if (callingFrame == 1) {
frameCompareLatencyDetail = jframeCompareLatencyDetail;
DrawDirectedGraph();
}
// The main function to add the vertices and edges according to the model
// TODO Auto-generated method stub
private void DrawDirectedGraph() {
nodeNbProgressBar = 0;
nodeNbProgressBar = tmap.getArch().getBUSs().size() + tmap.getArch().getHwBridge().size() + tmap.getArch().getHwA().size()
+ tmap.getArch().getMemories().size() + tmap.getArch().getCPUs().size();
frameLatencyDetailedAnalysis.getPbar().setMaximum(nodeNbProgressBar);
frameLatencyDetailedAnalysis.getPbar().setMinimum(0);
frameCompareLatencyDetail.getPbar().setMaximum(nodeNbProgressBar);
frameCompareLatencyDetail.getPbar().setMinimum(0);
HashMap<String, HashSet<TMLElement>> buschannel = new HashMap<String, HashSet<TMLElement>>();
HashMap<String, HashSet<TMLElement>> memorychannel = new HashMap<String, HashSet<TMLElement>>();
HashMap<String, HashSet<TMLElement>> bridgechannel = new HashMap<String, HashSet<TMLElement>>();
// HashMap<String, HashSet<TMLTask>> cpuTask = new HashMap<String,
// HashSet<TMLTask>>();
g = new DefaultDirectedGraph<>(DefaultEdge.class);
buschannel = addBUSs();
bridgechannel = addBridge();
addHwAs();
memorychannel = addMemories();
addBuschannel(buschannel);
addBridgechannel(bridgechannel);
addMemorychannel(memorychannel);
addUnmappedchannel();
addCPUs();
addLinkEdges();
addFlowEdges();
addSendEventWaitEventEdges();
addReadWriteChannelEdges();
addForkreadEdges();
addJoinreadEdges();
addWriteReadChannelEdges();
addSeqEdges();
addunOrderedSeqEdges();
addRequestEdges();
private void addUnmappedchannel() {
// TODO Auto-generated method stub
DiploSimulatorCodeGenerator gen = new DiploSimulatorCodeGenerator(tmap);
for (TMLChannel ch : tmap.getTMLModeling().getChannels()) {
List<HwCommunicationNode> pathNodes = gen.determineRoutingPath(tmap.getHwNodeOf(ch.getOriginTask()),
tmap.getHwNodeOf(ch.getDestinationTask()), ch);
if (!g.vertexSet().contains(getvertex(ch.getName()))) {
vertex v2 = vertex(ch.getName(), ch.getID());
g.addVertex(v2);
// gVertecies.add(vertex(ch.getName()));
getvertex(ch.getName()).setType(vertex.TYPE_CHANNEL);
getvertex(ch.getName()).setTaintFixedNumber(0);
updatemainBar(ch.getName());
if (!pathNodes.isEmpty()) {
for (HwCommunicationNode node : pathNodes) {
if (channelPaths.containsKey(ch.getName())) {
if (!channelPaths.get(ch.getName()).contains(node.getName())) {
channelPaths.get(ch.getName()).add(node.getName());
}
} else {
ArrayList<String> pathNodeNames = new ArrayList<String>();
pathNodeNames.add(node.getName());
channelPaths.put(ch.getName(), pathNodeNames);
}
vertex v1 = vertex(node.getName(), node.getID());
if (!g.containsEdge(v1, v2)) {
g.addEdge(v1, v2);
}
SummaryCommMapping = tmap.getSummaryCommMapping();
private void addCPUs() {
// TODO Auto-generated method stub
HashMap<String, HashSet<TMLTask>> cpuTask = new HashMap<String, HashSet<TMLTask>>();
HashMap<String, HashSet<String>> cpuTasks;
for (HwNode node : tmap.getArch().getCPUs()) {
cpuTask = new HashMap<String, HashSet<TMLTask>>();
cpuIDs.put(node.getName(), node.getID());
if (tmap.getLisMappedTasks(node).size() > 0) {
cpuTask.put(node.getName(), tmap.getLisMappedTasks(node));
}
cpuTasks = getCPUTaskMap(cpuTask);
}
private void addMemorychannel(HashMap<String, HashSet<TMLElement>> memorychannel) {
// TODO Auto-generated method stub
for (Entry<String, HashSet<TMLElement>> entry : memorychannel.entrySet()) {
String busName = entry.getKey();
HashSet<TMLElement> busChList = entry.getValue();
for (TMLElement busCh : busChList) {
String ChannelName = busCh.getName();
vertex v = vertex(ChannelName, busCh.getID());
if (!g.containsVertex(getvertex(ChannelName))) {
g.addVertex(v);
getvertex(ChannelName).setType(vertex.TYPE_CHANNEL);
// gVertecies.add(vertex(ChannelName));
getvertex(ChannelName).setTaintFixedNumber(0);
g.addEdge(getvertex(busName), getvertex(ChannelName));
}
private void addBridgechannel(HashMap<String, HashSet<TMLElement>> bridgechannel) {
// TODO Auto-generated method stub
for (Entry<String, HashSet<TMLElement>> entry : bridgechannel.entrySet()) {
String busName = entry.getKey();
HashSet<TMLElement> busChList = entry.getValue();
for (TMLElement busCh : busChList) {
String ChannelName = busCh.getName();
vertex v = vertex(ChannelName, busCh.getID());
if (!g.containsVertex(getvertex(ChannelName))) {
g.addVertex(v);
getvertex(ChannelName).setType(vertex.TYPE_CHANNEL);
// gVertecies.add(vertex(ChannelName));
getvertex(ChannelName).setTaintFixedNumber(0);
g.addEdge(getvertex(busName), getvertex(ChannelName));
}
private void addBuschannel(HashMap<String, HashSet<TMLElement>> buschannel) {
// TODO Auto-generated method stub
for (Entry<String, HashSet<TMLElement>> entry : buschannel.entrySet()) {
String busName = entry.getKey();
HashSet<TMLElement> busChList = entry.getValue();
for (TMLElement busCh : busChList) {
String ChannelName = busCh.getName();
vertex v = vertex(ChannelName, busCh.getID());
if (!g.containsVertex(v)) {
g.addVertex(v);
getvertex(ChannelName).setType(vertex.TYPE_CHANNEL);
// gVertecies.add(vertex(ChannelName));
getvertex(ChannelName).setTaintFixedNumber(0);
g.addEdge(getvertex(busName), getvertex(ChannelName));
// String writeChannel = tmlch.getDestinationTask().getName() + "__" +
// "writechannel:" + tmlch.getDestinationPort();
// String readChannel;
private HashMap<String, HashSet<TMLElement>> addMemories() {
HashMap<String, HashSet<TMLElement>> memorychannel = new HashMap<String, HashSet<TMLElement>>();
for (HwNode node : tmap.getArch().getMemories()) {
vertex v = vertex(node.getName(), node.getID());
if (!g.containsVertex(v)) {
g.addVertex(v);
updatemainBar("getMemories");
}
if (tmap.getLisMappedChannels(node).size() > 0) {
memorychannel.put(node.getName(), tmap.getLisMappedChannels(node));
return memorychannel;
}
private void addHwAs() {
// TODO Auto-generated method stub
HashMap<String, HashSet<TMLTask>> cpuTask = new HashMap<String, HashSet<TMLTask>>();
HashMap<String, HashSet<String>> cpuTasks;
for (HwA node : tmap.getArch().getHwA()) {
if (tmap.getLisMappedTasks(node).size() > 0) {
cpuTask.put(node.getName(), tmap.getLisMappedTasks(node));
}
cpuTasks = getCPUTaskMap(cpuTask);
}
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
}
private HashMap<String, HashSet<TMLElement>> addBridge() {
// TODO Auto-generated method stub
HashMap<String, HashSet<TMLElement>> bridgechannel = new HashMap<String, HashSet<TMLElement>>();
for (HwNode node : tmap.getArch().getHwBridge()) {
vertex v = vertex(node.getName(), node.getID());
if (!g.containsVertex(v)) {
g.addVertex(v);
updatemainBar("getHwBridge");
}
if (tmap.getLisMappedChannels(node).size() > 0) {
bridgechannel.put(node.getName(), tmap.getLisMappedChannels(node));
}
}
return bridgechannel;
}
private HashMap<String, HashSet<TMLElement>> addBUSs() {
// TODO Auto-generated method stub
HashMap<String, HashSet<TMLElement>> buschannel = new HashMap<String, HashSet<TMLElement>>();
for (HwNode node : tmap.getArch().getBUSs()) {
vertex v = vertex(node.getName(), node.getID());
if (!g.containsVertex(v)) {
g.addVertex(v);
updatemainBar("getBUSs");
}
if (tmap.getLisMappedChannels(node).size() > 0) {
buschannel.put(node.getName(), tmap.getLisMappedChannels(node));
}
}
return buschannel;
}
private void addLinkEdges() {
// TODO Auto-generated method stub
for (HwLink link : links) {
vertex vlink1 = vertex(link.hwnode.getName(), link.hwnode.getID());
vertex vlink2 = vertex(link.bus.getName(), link.bus.getID());
if (g.containsVertex(getvertex(link.hwnode.getName())) && g.containsVertex(getvertex(link.bus.getName()))) {
g.addEdge(vlink1, vlink2);
g.addEdge(vlink2, vlink1);
}
private void addFlowEdges() {
// TODO Auto-generated method stub
if (addedEdges.size() > 0) {
for (Entry<String, String> edge : addedEdges.entrySet()) {
g.addEdge(getvertex(edge.getKey()), getvertex(edge.getValue()));
}
private void addSendEventWaitEventEdges() {
// TODO Auto-generated method stub
if (sendEventWaitEventEdges.size() > 0) {
for (Entry<String, HashSet<String>> edge : sendEventWaitEventEdges.entrySet()) {
for (String waitEventEdge : edge.getValue())
g.addEdge(getvertex(edge.getKey()), getvertex(waitEventEdge));
}
private void addReadWriteChannelEdges() {
// TODO Auto-generated method stub
if (readWriteChannelEdges.size() > 0) {
for (Entry<String, HashSet<String>> edge : readWriteChannelEdges.entrySet()) {
for (String readChannelEdge : edge.getValue()) {
g.addEdge(getvertex(edge.getKey()), getvertex(readChannelEdge));
getvertex(edge.getKey()).setTaintFixedNumber(getvertex(edge.getKey()).getTaintFixedNumber() + 1);
}
}
}
}
private void addForkreadEdges() {
// TODO Auto-generated method stub
if (forkreadEdges.size() > 0) {
for (Entry<String, HashSet<String>> edge : forkreadEdges.entrySet()) {
HashSet<String> writech = forkwriteEdges.get(edge.getKey());
for (String readChannelEdge : edge.getValue()) {
for (String wch : writech) {
g.addEdge(getvertex(readChannelEdge), getvertex(wch));
}
}
}
}
}
// draw the vertices and edges for the tasks mapped to the CPUs
private void addJoinreadEdges() {
// TODO Auto-generated method stub
if (joinreadEdges.size() > 0) {
for (Entry<String, HashSet<String>> edge : joinreadEdges.entrySet()) {
HashSet<String> writech = joinwriteEdges.get(edge.getKey());
for (String readChannelEdge : edge.getValue()) {
g.addEdge(getvertex(readChannelEdge), getvertex(wch));
}
}
}
}
}
private void addWriteReadChannelEdges() {
// TODO Auto-generated method stub
if (writeReadChannelEdges.size() > 0) {
for (Entry<String, HashSet<String>> edge : writeReadChannelEdges.entrySet()) {
for (String readChannelEdge : edge.getValue()) {
g.addEdge(getvertex(edge.getKey()), getvertex(readChannelEdge));
getvertex(readChannelEdge).setTaintFixedNumber(getvertex(readChannelEdge).getTaintFixedNumber() + 1);
}
private void addRequestEdges() {
// TODO Auto-generated method stub
if (requestEdges.size() > 0) {
for (Entry<String, HashSet<String>> edge : requestEdges.entrySet()) {
for (String requestsingleEdges : edge.getValue()) {
g.addEdge(getvertex(edge.getKey()), getvertex(requestsingleEdges));
}
}
}
}
private void addunOrderedSeqEdges() {
// TODO Auto-generated method stub
if (unOrderedSequenceEdges.size() > 0) {
for (Entry<String, HashSet<String>> edge : unOrderedSequenceEdges.entrySet()) {
g.addEdge(getvertex(edge.getKey()), getvertex(sequenceEdge));
private void addSeqEdges() {
if (sequenceEdges.size() > 0) {
for (Entry<String, HashSet<String>> edge : sequenceEdges.entrySet()) {
for (String sequenceEdge : edge.getValue())
g.addEdge(getvertex(edge.getKey()), getvertex(sequenceEdge));
}
private void expectedNumberofVertex() {
for (HwA node : tmap.getArch().getHwA()) {
if (tmap.getLisMappedTasks(node).size() > 0) {
nodeNbProgressBar = tmap.getLisMappedTasks(node).size() + nodeNbProgressBar;
for (TMLTask task : tmap.getLisMappedTasks(node)) {
for (TMLActivityElement ae : task.getActivityDiagram().getElements()) {
if (ae.getName().equals("Stop after infinite loop")) {
for (HwNode node : tmap.getArch().getCPUs()) {
if (tmap.getLisMappedTasks(node).size() > 0) {
nodeNbProgressBar = tmap.getLisMappedTasks(node).size() + nodeNbProgressBar;
for (TMLTask task : tmap.getLisMappedTasks(node)) {
for (TMLActivityElement ae : task.getActivityDiagram().getElements()) {
if (ae.getName().equals("Stop after infinite loop")) {
}
}
HashSet<String> mappedcomm = new HashSet<String>();
for (HwNode node : tmap.getArch().getBUSs()) {
if (tmap.getLisMappedChannels(node).size() > 0) {
for (TMLElement entry : tmap.getLisMappedChannels(node)) {
if (!mappedcomm.contains(entry.getName())) {
mappedcomm.add(entry.getName());
nodeNbProgressBar++;
}
}
}
for (HwNode node : tmap.getArch().getHwBridge()) {
if (tmap.getLisMappedChannels(node).size() > 0) {
for (TMLElement entry : tmap.getLisMappedChannels(node)) {
if (!mappedcomm.contains(entry.getName())) {
mappedcomm.add(entry.getName());
nodeNbProgressBar++;
for (HwNode node : tmap.getArch().getMemories()) {
if (tmap.getLisMappedChannels(node).size() > 0) {
for (TMLElement entry : tmap.getLisMappedChannels(node)) {
if (!mappedcomm.contains(entry.getName())) {
mappedcomm.add(entry.getName());
nodeNbProgressBar++;
for (TMLChannel ch : tmap.getTMLModeling().getChannels()) {
if (!mappedcomm.contains(ch.getName())) {
mappedcomm.add(ch.getName());
{
frameLatencyDetailedAnalysis.updateBar(nbOfNodes);
} else if (callingFrame == 1) {
frameCompareLatencyDetail.updateBar(nbOfNodes);
public HashMap<String, HashSet<String>> getCPUTaskMap(HashMap<String, HashSet<TMLTask>> cpuTask) {
HashMap<String, HashSet<String>> cpuTaskMap = new HashMap<String, HashSet<String>>();
if (tmap == null) {
return cpuTaskMap;
}
for (Entry<String, HashSet<TMLTask>> entry : cpuTask.entrySet()) {
String key = entry.getKey();
int keyID = cpuIDs.get(key);
HashSet<TMLTask> value = entry.getValue();
Vector<TMLActivityElement> multiNexts = new Vector<TMLActivityElement>();
// Map <String, String> sendEvt;
sendEvt = new HashMap<String, List<String>>();
waitEvt = new HashMap<String, List<String>>();
sendData = new HashMap<String, String>();
receiveData = new HashMap<String, String>();
// HashMap<String, List<String>> sendEvt = new HashMap<String, List<String>>();
for (TMLTask task : value) {
int taskID = task.getID();
String taskName = task.getName();
// get the names and params of send events per task and their corresponding wait
// events
// get the names of read channels per task and their corresponding write
// channels
// get the names of write channels per task and their corresponding read
// channels
// get the names and params of wait events per task and their corresponding send
// events
waitEventNames();
if (!g.vertexSet().contains(getvertex(key))) {
g.addVertex(vertex(key, keyID));
updatemainBar(key);
}
if (!g.vertexSet().contains(getvertex(taskName))) {
g.addVertex(vertex(taskName, taskID));
updatemainBar(taskName);
}
g.addEdge(getvertex(key), getvertex(taskName));
activity = task.getActivityDiagram();
opCount = 1;
currentElement = activity.getFirst();
taskStartName = "";
// int taskStartid;
forLoopNextValues = new HashMap<String, List<String>>();
// loop over all the activites corresponding to a task
while (opCount <= activity.nElements()) {
if (currentElement.getName().equals("Stop after infinite loop")) {
opCount++;
if (opCount <= activity.nElements()) {
if (currentElement.getNexts().size() == 1) {
currentElement = currentElement.getNexts().firstElement();
} else if (!multiNexts.isEmpty()) {
currentElement = multiNexts.get(0);
continue;
} else {
break;
}
} else if (currentElement.getName().equals("startOfFork") || currentElement.getName().equals("junctionOfFork")
|| currentElement.getName().equals("startOfJoin") || currentElement.getName().equals("junctionOfJoin")) {
opCount++;
currentElement = currentElement.getNexts().firstElement();
continue;
} else if (taskName.startsWith("FORKTASK_S_") && currentElement.getName().equals("ReadOfFork")) {
String name = ((TMLReadChannel) (currentElement)).getChannel(0).getName();
int id = ((TMLReadChannel) (currentElement)).getChannel(0).getID();
if (!g.containsVertex(getvertex(name))) {
g.addVertex(vertex(name, id));
g.addEdge(getvertex(taskName), getvertex(((TMLReadChannel) (currentElement)).getChannel(0).getName()));
HashSet<String> readForkVertex = new HashSet<String>();
readForkVertex.add(((TMLReadChannel) (currentElement)).getChannel(0).getName());
if (!forkreadEdges.get(taskName).contains(((TMLReadChannel) (currentElement)).getChannel(0).getName())) {
forkreadEdges.get(taskName).add(((TMLReadChannel) (currentElement)).getChannel(0).getName());
}
currentElement = currentElement.getNexts().firstElement();
} else if (taskName.startsWith("FORKTASK_S_") && currentElement.getName().startsWith("WriteOfFork_S")) {
String vName = ((TMLWriteChannel) (currentElement)).getChannel(0).getName();
int vid = ((TMLWriteChannel) (currentElement)).getChannel(0).getID();
vertex v = getvertex(vName);
if (!g.containsVertex(v)) {
g.addVertex(vertex(vName, vid));
}
HashSet<String> writeForkVertex = new HashSet<String>();
writeForkVertex.add(((TMLWriteChannel) (currentElement)).getChannel(0).getName());
if (forkwriteEdges.containsKey(taskName)) {
if (!forkwriteEdges.get(taskName).contains(((TMLWriteChannel) (currentElement)).getChannel(0).getName())) {
forkwriteEdges.get(taskName).add(((TMLWriteChannel) (currentElement)).getChannel(0).getName());